Skip to main content
Log in

Geochemical distinctions between igneous carbonate, calcite cements, and limestone xenoliths (Polino carbonatite, Italy): spatially resolved LAICPMS analyses

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Petrography-controlled laser ablation inductively coupled plasma mass spectrometry (LAICPMS) analyses of carbonate in fresh shallow level sub-volcanic Polino monticellite calcio-carbonatite tuffisite have been performed to assess the geochemical differences between fresh igneous, epigenetic carbonates and sedimentary accidental fragments. Igneous calcite has consistently high LREE/HREE ratios (La/Yb N , 15–130) due to high LREE (ΣLREE, 425–1,269 ppm). Secondary calcite cements are characterized by progressively lower and more variable trace element contents, with lower LREE/HREE ratios. A distinguishing geochemical feature is progressively increasing negative Ce anomalies observed through coarse secondary calcite that can be related to the surface environment processes. The limestone accidental fragments in the tuffisite have trace element contents almost two orders of magnitude lower than igneous carbonate and low LREE (ΣLREE < 9.5 ppm) with low LREE/HREE fractionation (La/Yb N ratios < 18). The stable isotope composition of different carbonate types is consistent with their formation in different environments. The tuffisitization processes during diatreme formation under high CO2-OH fugacity conditions may account for the differences noted in the igneous carbonates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bailey DK (1985) Fluids, melts, flowage, and styles of eruption in alkaline–ultra-alkaline magmatism. Trans Geol Soc S Afr 88:449–457

    Google Scholar 

  • Bailey DK (2005) Carbonate volcanics in Italy: numerical tests for the hypothesis of lava-sedimentary limestone mixing. Periodico di Mineralogia 74:205–208

    Google Scholar 

  • Barker DS (2007) Origin of cementing calcite in ‘carbonatite’ tuffs. Geol 35:371–374

    Article  Google Scholar 

  • Bau M, Möller P (1992) Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite. Mineral Petrol 45:231–246

    Article  Google Scholar 

  • Bell K, Kjarsgaard B (2006) Discussion of Peccerillo A (2004) “Carbonate-rich pyroclastic rocks from central Appennines: carbonatites or carbonate-rich rocks?”. Periodico di Mineralogia 75:85–92

    Google Scholar 

  • Chakhmouradian AR (2006) High-field-strength elements in carbonatitic rocks: geochemistry, crystal chemistry and significance for constraining the sources of carbonatites. Chem Geol 235:138–160

    Article  Google Scholar 

  • Chakhmouradian AR, McCammon CA (2005) Schorlomite: a discussion of the crystal chemistry, formula, and inter-species boundaries. Phys Chem Minerals 32:277–289

    Article  Google Scholar 

  • Compton JS, White RA, Smith M (2003) Rare earth element behaviour in soil and salt pan sediments of a semi-arid granitic terrain in the Western Cape, South Africa. Chem Geol 201:239–255

    Article  Google Scholar 

  • D’Orazio M, Innocenti F, Tonarini S, Doglioni C (2007) Carbonatites in a subduction system: the Pleistocene alvikites from Mt Vulture (southern Italy). Lithos 98:313–334

    Article  Google Scholar 

  • Dawson JB, Keller J, Nyamweru C (1995) Historic and recent eruptive activity of Oldoinyo Lengai. In: Bell K, Keller J (eds) Carbonatite volcanism: Oldoinyo Lengai and the petrogenesis of natrocarbonatites. IAVCEI Proceedings in Volcanology, Springer Verlag, Berlin, 4:4–22

  • Deines P, Gold DP (1973) The isotopic composition of carbonatite and kimberlite carbonates and their bearing on the isotopic composition of deep-seated carbon. Geochim Cosmochim Acta 37:1709–1733

    Article  Google Scholar 

  • Denniston RF, Shearer CK, Layne GD, Vaniman DT (1997) SIMS analyses of minor and trace element distributions in fracture calcite from Yucca Mountain, Nevada, USA. Geochim Cosmochim Acta 61:1803–1818

    Article  Google Scholar 

  • Elderfield H, Greaves MJ (1982) The rare earth elements in seawater. Nature 296:214–219

    Article  Google Scholar 

  • Elderfield H, Upstill-Goddard R, Sholkovitz ER (1990) The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters. Geochim Cosmochim Acta 54:971–991

    Article  Google Scholar 

  • Green DH, Wallace ME (1988) Mantle metasomatism by ephemeral carbonatite melts. Nature 336:459–462

    Google Scholar 

  • Hay RL (1978) Melilitite–carbonatite tuffs in the Laetolil beds of Tanzania. Contrib Mineral Petrol 67:357–367

    Article  Google Scholar 

  • Hay RL, O’Neil JR (1983) Carbonatite tuffs in the Laetolil beds of Tanzania and the Kaiserstuhl in Germany. Contrib Mineral Petrol 82:403–406

    Article  Google Scholar 

  • Hubberten HW, Katz-Lehnert K, Keller J (1988) Carbon and oxygen isotope investigations in carbonatites and related rocks from the Kaiserstuhl, Germany. Chem Geol 70:257–274

    Article  Google Scholar 

  • Jeffries TE (2001) Elemental analysis by laser ablation ICP-MS. In: Alfassi ZB (ed) Non-destructive elemental analysis. Blackwell Science, Oxford, pp 115–150

    Google Scholar 

  • Junqueira-Brod TC, Brod JA, Thompson RN, Gibson SA (1999) Spinning droplets—a conspicuous lapilli-size structure in kamafugite diatreme of Southern Goiás, Brazil. Rivista Brasileira de Geosciencias 29:437–440

    Google Scholar 

  • Knudsen C, Buchardt B (1991) Carbon and oxygen isotope composition of carbonates from the Qaqarssuk carbonatite complex, southern west Greenland. Chem Geol 86:263–274

    Google Scholar 

  • Laurenzi M, Stoppa F, Villa I (1994) Eventi ignei monogenetici e depositi piroclastici nel distretto ultra-alcalino Umbro-Laziale (ULUD): revisione, aggiornamento e comparazione dei dati cronologici. Plinius 12:61–65

    Google Scholar 

  • Le Bas MJ (1996) Standard rare earth element compositions for sovitic and alvikitic carbonatites. In: Gupta AK, Onuma K, Arima M (eds) Geochemical studies on synthetic and natural rock systems (Kenzo Yagi volume). Allied Publishers, New Delhi, pp 90–110

    Google Scholar 

  • Lee WJ, Wyllie PJ (1998) Petrogenesis of carbonatite magmas from mantle to crust, constrained by the system CaO-(MgO+FeO*)-(Na2O+K2O)-(SiO2+Al2O3+TiO2)-CO2. J Petrol 39:495–577

    Google Scholar 

  • Lupini L, Williams CT, Woolley AR (1992) Zr-rich garnet and Zr- and Th-rich perovkite from Polino carbonatite, Italy. Min Mag 56:581–586

    Article  Google Scholar 

  • McLennan SM (1982) On the geochemical evolution of sedimentary rocks. Chem Geol 37:335–350

    Article  Google Scholar 

  • Nelson DR, Chivas AR, Chappell BW, McCulloch MT (1988) Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. Geochim Cosmochim Acta 52:1–17

    Article  Google Scholar 

  • Panina L, Stoppa F (2009) Silicate–carbonate–salt liquid immiscibility and origin of the sodalite–hayne rocks: study of melt inclusions in olivine foidite from Vulture volcano, S. Italy. Central Eur J Geosci 1(4):377–392

    Article  Google Scholar 

  • Peccerillo A (2004) Carbonate-rich pyroclastic rocks from central Apennines: carbonatites or carbonated rocks? A commentary. Periodico di Mineralogia 73:165–175

    Google Scholar 

  • Peccerillo A, Poli G, Serri G (1988) Petrogenesis of orenditic and kamafugitic rocks from central Italy. Can Mineral 26:45–65

    Google Scholar 

  • Riley TR, Bailey DK, Harmer RE, Liebsch H, Lloyd FE, Palmer MR (1999) Isotopic and geochemical investigation of a carbonatite–syenite–phonolite diatreme, West Eifel (Germany). Mineral Mag 63:615–631

    Article  Google Scholar 

  • Rollinson H (1993) Using geochemical data: evaluation, presentation interpretation. Longman, London, p 352

    Google Scholar 

  • Rosatelli G, Stoppa F, Jones AP (2000) Intrusive calcite-carbonatite occurrence from Mt. Vulture volcano, Southern Italy. Min Mag 64:341–361

    Google Scholar 

  • Stoppa F, Lavecchia G (1992) Late pleistocene ultra-alkaline activity in the Umbria-Latium region (Italy): an overview. J Vol Geotherm Res 52:277–293

    Google Scholar 

  • Stoppa F, Liu Y (1995) Chemical composition and petrogenetic implications of apatites from some ultra-alkaline Italian rocks. Eur J Mineral 7:391–402

    Google Scholar 

  • Stoppa F, Lupini L (1993) Mineralogy and petrology of the Polino monticellite calciocarbonatite (Central Italy). Mineral Petrol 49:213–231

    Article  Google Scholar 

  • Stoppa F, Woolley AR (1997) The Italian carbonatites: field occurrence, petrology and regional significance. Mineral Petrol 59:43–67

    Article  Google Scholar 

  • Stoppa F, Lloyd FE, Rosatelli G (2003) CO2 as the virtual propellant of carbonatitic conjugate pairs and the eruption of diatremic tuffisite. Periodico di Mineralogia 72:205–222

    Google Scholar 

  • Stoppa F, Rosatelli G, Wall F, Jeffries T (2005) Geochemistry of carbonatite–silicate pairs in nature: a case history from Central Italy. Lithos 85:26–47

    Article  Google Scholar 

  • Stoppa F, Jones AP, Sharygin VV (2009) Nyerereite from carbonatite rocks at Vulture volcano: implications for mantle metasomatism and petrogenesis of alkali carbonate melts. Cent Europ J Geoscience 1:131–151

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Magmatism in the ocean basins. Geological Society Special Publication 42:313–345

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford

    Google Scholar 

  • Taylor HP, Frechen J, Degens ET (1967) Oxygen and carbon isotope studies of carbonatites from the Laacher See District, West Germany and the Alno District, Sweden. Geochim Cosmochim Acta 31:407–430

    Article  Google Scholar 

  • Woolley AR, Church AA (2005) Extrusive carbonatites: a brief review. Lithos 85:1–14

    Article  Google Scholar 

  • Woolley AR, Kempe DRC (1989) Carbonatites: nomenclature, average chemical compositions, and element distribution. In: Bell K (ed) Carbonatites. Genesis and evolution. Unwin-Hyman, London, pp 1–14

    Google Scholar 

  • Woolley AR, Bailey DK, Castorina F, Rosatelli G, Stoppa F, Wall F (2005) Reply to: Peccerillo A (2004) Carbonate-rich pyroclastic rocks from central Apennines: carbonatites or carbonated rocks? A commentary. Periodico di Mineralogia 74:183–194

    Google Scholar 

  • Zaitsev AN, Keller J (2006) Mineralogical and chemical transformation of Oldoinyo Lengai natrocarbonatites, Tanzania. Lithos 91:191–207

    Article  Google Scholar 

  • Zaitsev AN, Keller J, Spratt J, Perova EN, Kearsley A (2008) Nyerereite–pirssonite–calcite–shortite relationships in altered natrocarbonatites, Oldoinyo Lengai, Tanzania. Can Mineral 46:843–860

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank John Spratt and Terry Williams for help with electron microprobe analyses, Teresa Jeffries for help with LAICPMS, and Tony Wighton for sample preparation. The paper has been improved with the critical review of Ken Bailey and Alex Teague, who we thank. This research was funded by Synthesis 2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rosatelli.

Additional information

Communicated by J. Blundy.

G. Rosatelli and F. Wall were formerly with the Natural History Museum, Cromwell Road, London, SW7 5BD, UK.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosatelli, G., Wall, F., Stoppa, F. et al. Geochemical distinctions between igneous carbonate, calcite cements, and limestone xenoliths (Polino carbonatite, Italy): spatially resolved LAICPMS analyses. Contrib Mineral Petrol 160, 645–661 (2010). https://doi.org/10.1007/s00410-010-0499-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-010-0499-x

Keywords

Navigation