Skip to main content
Log in

Growth of bultfonteinite and hydrogarnet in metasomatized basalt xenoliths in the B/K9 kimberlite, Damtshaa, Botswana: insights into hydrothermal metamorphism in kimberlite pipes

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Metamorphic assemblages within Karoo basalt xenoliths, found within volcaniclastic kimberlite of the B/K9 pipe, Damtshaa, Botswana, constrain conditions of kimberlite alteration. Bultfonteinite and chlorite partially replace the original augite-plagioclase assemblage, driven by the serpentinisation of the kimberlite creating strong chemical potential gradients for Si and Mg. Hydrogarnet and serpentine replace these earlier metamorphic assemblages as the deposits cool. The bultfonteinite (ideally Ca2SiO2[OH,F]4) and hydrogarnet assemblages require a water-rich fluid containing F, and imply hydrothermal alteration dominated by external fluids rather than autometamorphism from deuteric fluids. Bultfonteinite and hydrogarnet are estimated to form at temperatures of ca. 350–250°C, which are similar to those for serpentinisation. Alteration within the B/K9 kimberlite predominantly occurs between 250 and 400°C. We attribute these conditions to increased efficiency of mass transfer and chemical reactions below the critical point of water and a consequence of volume-increasing serpentinisation and metasomatic reactions that take place over this temperature range. A comparison of the B/K9 kimberlite with kimberlites from Venetia, South Africa suggests that the composition and mineralogy of included xenoliths affects the alteration assemblages within kimberlite deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adams S, Titus R, Pietersen K, Tredoux G, Harris C (2001) Hydrochemical characteristics of aquifers near Sutherland in the Western Karoo, South Africa. J Hydrol 241:91–103

    Article  Google Scholar 

  • Alt JC, Shanks WC III (2003) Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: sulfur geochemistry and reaction modeling. Geochim Cosmochim Acta 67:641–653

    Article  Google Scholar 

  • Amthauer G, Rossman GR (1998) The hydrous component in andradite garnet. Am Mineral 83:835–840

    Google Scholar 

  • Andreani M, Mevel C, Boullier, AM, Escartin J (2007) Dynamic control on serpentine crystallization in veins: constraints on hydration processes in oceanic peridotites. Geochem Geophys Geosyst 8:1–24

    Google Scholar 

  • Berg GW (1989) The significance of brucite in South African kimberlites. In: Ross J (ed) Kimberlite and related rocks: their mantle/crust setting. Diamonds and diamond exploration, vol 2. Blackwell Scientific, Victoria

    Google Scholar 

  • Bonazzi P, Bindi L, Medenbach O, Pagano R, Lampronti GI, Menchetti S (2007) Olmiite, CaMn[SiO3(OH)](OH), the Mn-dominant analogue of poldervaartite, a new mineral species from Kalahari manganese fields (Republic of South Africa). Mineral Mag 71:193–201

    Article  Google Scholar 

  • Brown RJ, Buse B, Sparks RSJ, Field M (2008) On the welding of pyroclasts from very low-viscosity magmas: examples from kimberlite volcanoes. J Geol 116:354–374

    Article  Google Scholar 

  • Burnham CW (1959) Contact metamorphism of magnesian limestones at Crestmore, California. GSA Bull 70:879–920

    Article  Google Scholar 

  • Cas RAF, Hayman P, Pittari A, Porritt L (2008) Some major problems with existing models and terminology associated with kimberlite pipes from a volcanological perspective, and some suggestions. J Volcanol Geoth Res 174:209–225

    Article  Google Scholar 

  • Cathles LM (1977) Analysis of cooling of intrusives by groundwater convection which includes boiling. Econ Geol 72:804–826

    Article  Google Scholar 

  • Cathles LM (1997) Thermal aspects of ore formation. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 3rd edn. Wiley, New York, pp 191–228

    Google Scholar 

  • Chae GT, Yun ST, Mayer B, Kim KH, Kim SY, Kwon JS, Kim K, Koh YK (2007) Fluorine geochemistry in bedrock groundwater of South Korea. Sci Total Environ 385:272–283

    Article  Google Scholar 

  • Chakhmouradian AR, Mitchell RH (2001) Three compositional varieties of perovskite from kimberlites of the Lac de Gras field (Northwest Territories, Canada). Mineral Mag 65(1):133–148

    Article  Google Scholar 

  • Cheng WJ, Greenwood HJ, Hu HL, Frost DC (1990) XRD and XPS analyses of the grossular hydrogrossular series. Can Mineral 28:87–91

    Google Scholar 

  • Connelly RJ, Gibson J (1985) Dewatering of the open pits at Letlhakane and Orapa Diamond Mines, Botswana. Intl J Mine Water 4:25–41

    Article  Google Scholar 

  • Connolly JAD (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236:524–541

    Article  Google Scholar 

  • Cressey G, Schofield PF (1996) Rapid whole-pattern profile stripping method for the quantification of multiphase samples. Powder Diffr 11:35–39

    Google Scholar 

  • Dai YS, Harlow GE (1992) Description and crystal-structure of vonbezingite, a new Ca–Cu–SO4–H2O mineral from the Kalahari manganese field, South-Africa. Am Mineral 77:1292–1300

    Google Scholar 

  • Dawson JB (1980) Kimberlites and their xenoliths. Springer, Berlin

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1982) Orthosilicates. Rock-forming minerals, vol 1A, 2nd edn. Longman, London

    Google Scholar 

  • Dekov V, Schlolten J, Garbe-Schonberg CD, Botz R, Cuadros J, Schmidt M, Stoffers P (2008) Hydrothermal sediment alteration at a seafloor vent field: Grimsey Graben, Tjornes Fracture Zone, north of Iceland. J Geophys Res 113:B11101

    Google Scholar 

  • Field M, Selfe G (1996) A geological model for the 2125B/K9 kimberlite. Unpublished Report, Debswana Diamond Company

  • Field M, Scott Smith BH (1999) Contrasting geology and near-surface emplacement of kimberlite pipes in Southern Africa and Canada. Proc 7th Intl Kimberlite Conf 1:214–237

    Google Scholar 

  • Field M, Gibson JG, Wilkes TA, Gababotse J, Khutjwe P (1997) The geology of the Orapa A/K1 kimberlite Botswana: Further insight into the emplacement of kimberlite pipes. Russ Geol Geophys 38:24–39

    Google Scholar 

  • Field M, Stiefenhofer J, Robey J, Kurszlaukis S (2008) Kimberlite-hosted diamond deposits of southern Africa: A review. Ore Geol. Rev 34(1–2):33–75

    Article  Google Scholar 

  • Fournier RO (1999) Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Econom Geol Bull Soc Econom Geol 94(8):1193–1211

    Google Scholar 

  • Frape S, Blyth A, Blomqvist R, McNutt R, Gascoyne M (2004) Deep fluids in the continents: II. Crystalline rocks. In: Drever J (ed) Treatise on geochemistry: surface and ground water, weathering, and soils, vol 5. Elsevier, Amsterdam

    Google Scholar 

  • Frost BR, Beard JS, McCaig A, Condliffe E (2008) The formation of micro-rodingites from IODP hole U1309D: key to understanding the process of serpentinization. J Petrol 49(9):1579–1588

    Article  Google Scholar 

  • Goff F, McMurtry GM (2000) Tritium and stable isotopes of magmatic waters. J Volcanol Geotherm Res 97(1–4):347–396

    Article  Google Scholar 

  • Gresens RL (1967) Composition–volume relationships of metasomatism. Chem Geol 2:47–65

    Article  Google Scholar 

  • Haggerty SE (1975) The chemistry and genesis of opaque minerals in kimberlites. Phys Chem Earth 9:295–307

    Article  Google Scholar 

  • Haggerty SE (1991) Oxide textures—a mini-Atlas. In: Lindsley DH (ed) Oxide minerals: petrologic and magnetic significance. Reviews in mineralogy, vol 25. Mineralogical Society of America, Washington, pp 129–220

    Google Scholar 

  • Halenius U (2004) Stabilization of trivalent Mn in natural tetragonal hydrogarnets on the join ‘hydrogrossular’-henritermierite, Ca3Mn2 3+[SiO4]2[H4O4]. Mineral Mag 68:335–341

    Article  Google Scholar 

  • Halenius U, Haussermann U, Harryson H (2005) Holtstamite, Ca3(Al, Mn3+)2(SiO4)3x(H4O4) x , a new tetragonal hydrogarnet from Wessels Mine, South Africa. Eur J Mineral 17:375–382

    Article  Google Scholar 

  • Henley RW, Ellis AJ (1983) Geothermal systems ancient and modern—a geochemical review. Earth-Sci Rev 19(1):1–50

    Article  Google Scholar 

  • Henmi C (1995) Kusachiite, CuBi2O4, a new mineral from Fuka, Okayama Prefecture, Japan. Mineral Mag 59:545–548

    Article  Google Scholar 

  • Henry DA (1999) Cuspidine-bearing skarn from Chesney Vale, Victoria. Aust J Earth Sci 46:251–260

    Article  Google Scholar 

  • Hitchon B (1995) Fluorine in formation waters, Alberta Basin, Canada. Appl Geochem 10:357–367

    Article  Google Scholar 

  • Holland HD, Malinin SD (1979) The solubility and occurrence of non-ore minerals. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Wiley, New York, pp 461–508

    Google Scholar 

  • Holt EW, Taylor HP (2001) O-18/O-16 studies of fossil fissure fumaroles from the Valley of Ten Thousand Smokes, Alaska. Bull Volcanol 63(2–3):151–163

    Article  Google Scholar 

  • Iyer K, Austrheim H, John T, Jamtveit B (2008) Serpentinization of the oceanic lithosphere and some geochemical consequences: constraints from the Leka Ophiolite Complex, Norway. Chem Geol 249(1–2):66–90

    Article  Google Scholar 

  • Jamtveit B, Ragnarsdottir KV, Wood BJ (1995) On the origin of zoned grossular-andradite garnets in hydrothermal systems. Eur J Mineral 7(6):1399–1410

    Google Scholar 

  • Jourdan F, Bertrand H, Scharer U, Blichert-Toft J, Feraud G, Kampunzu AB (2007) Major and trace element and Sr, Nd, Hf and Pb isotope compositions of the Karoo large igneous province, Botswana-Zimbabwe: lithosphere vs mantle plume contribution. J Petrol 48(6):1043–1077

    Article  Google Scholar 

  • Jupp T, Schultz A (2000) A thermodynamic explanation for black smoker temperatures. Nature 403(6772):880–883

    Article  Google Scholar 

  • Jupp TE, Schultz A (2004) Physical balances in subseafloor hydrothermal convection cells. J Geophys Res 109(B5):1–12

    Google Scholar 

  • Keller LM, Abart R, Stunitz H, De Capitani C (2004) Deformation, mass transfer and mineral reactions in an eclogite facies shear zone in a polymetamorphic metapelite (Monte Rosa nappe, western Alps). J Metamorph Geol 22:97–118

    Article  Google Scholar 

  • Key RM, Ayres N (2000) The 1998 edition of the National Geological Map of Botswana. J Afr Earth Sci 30(3):427–451

    Article  Google Scholar 

  • Kobayashi S, Shoji T (1987) Infrared spectra and cell dimensions of hydrothermally synthesized grandite-hydrograndite series. Mineral J 13:490–499

    Article  Google Scholar 

  • Kusachi I, Henmi C, Henmi K (1984) An oyelite-bearing vein at Fuka, the Town of Bitchu, Okayama Prefecture. J Japan Assoc Min Petr Econ Geol 79:267–275

    Google Scholar 

  • Lager GA, Armbruster T, Rotella FJ, Rossman GR (1989) OH substitution in garnets: X-ray and neutron-diffraction, infrared, and geometric-modeling studies. Am Mineral 74:840–851

    Google Scholar 

  • Laine HM, O’Brien HE (2008) Alteration and primary kimberlite rock type classification for Lahtojoki kimberlite, Finland. 9th International kimberlite conference extended abstracts

  • Laverne C, Grauby O, Alt JC, Bohn M (2006) Hydroschorlomite in altered basalts from Hole 1256D, ODP Leg 206: the transition from low-temperature to hydrothermal alteration. Geochem Geophys Geosyst 7:Q10003

    Google Scholar 

  • McIver EJ (1963) The structure of bultfonteinite, Ca4Si2O10F2H6. Acta Cryst 16:551–558

    Article  Google Scholar 

  • Meagher EP (1982) Silicate garnets. In: Ribbe PH (ed) Orthosilicates. Reviews in mineralogy, vol 5. Mineralogical Society of America, Washington, pp 25–58

    Google Scholar 

  • Mitchell RH (1986) Kimberlites: mineralogy, geochemistry, and petrology. Plenum Press, New York

    Google Scholar 

  • Mitchell RH (1995) Kimberlites, orangeites, and related rocks. Plenum Press, New York

    Google Scholar 

  • Mitchell RH (2008) Petrology of hypabyssal kimberlites: relevance to primary magma compositions. J Volcanol Geoth Res 174:1–8

    Article  Google Scholar 

  • Mitchell RH, Skinner EMW, Scott Smith BH (2009) Tuffisitic kimberlites from the Wesselton Mine, South Africa: Mineralogical characteristics relevant to their formation. Lithos 112S:452–464

    Google Scholar 

  • Moghaddam AA, Fijani E (2008) Distribution of fluoride in groundwater of Maku area, northwest of Iran. Environ Geol 56:281–287

    Article  Google Scholar 

  • Murdoch J (1955a) Bultfonteinite from Crestmore, California. Am Mineral 40:900–904

    Google Scholar 

  • Murdoch J (1955b) Scawtite from Crestmore, California. Am Mineral 40:505–509

    Google Scholar 

  • Nowicki T, Porritt L, Crawford B, Kjarsgaard B (2008) Geochemical trends in kimberlites of the Ekati property, Northwest Territories, Canada: insights on volcanic and resedimentation processes. J Volcanol Geotherm Res 174(1–3):117–127

    Article  Google Scholar 

  • Nyfeler D, Armbruster T, Dixon R, Bermanec V (1995) Nchwaningite, Mn2SiO3(OH)2H2O, a new pyroxene-related chain silicate from the N’chwaning mine, Kalahari manganese field, South Africa. Am Mineral 80:377–386

    Google Scholar 

  • Ohnishi M, Kusachi I, Kobayashi S, Yamakawa J, Tanabe M, Kishi S et al (2007) Numanoite, Ca4CuB4O6(OH)6(CO3)2, a new mineral species, the Cu analogue of borcarite from the Fuka mine, Okayama Prefecture, Japan. Can Mineral 45:307–315

    Article  Google Scholar 

  • Parry J, Williams AF, Wright FE (1932) On bultfonteinite, a new fluorine-bearing hydrous calcium silicate from South Africa. Mineral Mag 23:145–162

    Article  Google Scholar 

  • Peacor DR, Rouse RC, Bailey SW (1988) Crystal-structure of franklinfurnaceite—a tri-dioctahedral zincosilicate intermediate between chlorite and mica. Am Mineral 73(7–8):876–887

    Google Scholar 

  • Pistorius CWF (1963) Thermal decomposition of portlandite and xonotlite to high pressures and temperatures. Am J Sci 261:79–87

    Article  Google Scholar 

  • Salvi S, Pokrovski GS, Schott J (1998) Experimental investigation of aluminum-silica aqueous complexing at 300°C. Chem Geol 151(1–4):51–67

    Article  Google Scholar 

  • Shevenell L, Goff F (1995) Evolution of hydrothermal waters at Mount St Helens, Washington, USA. J Volcanol Geotherm Res 69(1–2):73–94

    Article  Google Scholar 

  • Singh B, Cornelius M (2006) Geochemistry and mineralogy of the regolith profile over the Aries kimberlite pipe, Western Australia. Geochem Explor Environ Anal 6:311–323

    Article  Google Scholar 

  • Skinner EMW, Marsh JS (2004) Distinct kimberlite pipe classes with contrasting eruption processes. Lithos 76:183–200

    Article  Google Scholar 

  • Smith RMH, Eriksson PG, Botha WJ (1993) A review of the stratigraphy and sedimentary environments of the Karoo-aged Basins of Southern Africa. J Afr Earth Sci 16:143–169

    Article  Google Scholar 

  • Sparks RSJ, Baker L, Brown RJ, Field M, Schumacher J, Stripp G, Walters A (2006) Dynamical constraints on kimberlite volcanism. J Volcanol Geoth Res 155:18–48

    Article  Google Scholar 

  • Sparks RSJ, Brooker R, Field M, Kavanagh J, Schumacher J, Walters M, White J (2009) The nature of erupting kimberlite melts. Lithos 112S:429–438

    Google Scholar 

  • Stripp GR, Field M, Schumacher JC, Sparks RSJ, Cressey G (2006) Post-emplacement serpentinization and related hydrothermal metamorphism in a kimberlite from Venetia, South Africa. J Metamorph Geol 24:515–534

    Article  Google Scholar 

  • Taylor BE, Liou JG (1978) The low-temperature stability of andradite in C-O-H fluids. Am Mineral 63:378–393

    Google Scholar 

  • Tropper P, Manning CE (2007) The solubility of fluorite in H2O and H2O–NaCl at high pressure and temperature. Chem Geol 242:299–306

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr S. Kearns for his assistance in electron microprobe and SEM techniques and Dr J. Najorka and Dr G. Cressey for their assistance in XRD techniques. Nick Marsh and Rob Wilson are thanked for assistance in sample preparation and conducting XRF analysis. We thank K. Chisi, T. Tlhaodi and P. Kesebonye (Debswana) for their assistance with logistics and fieldwork at Orapa. This research was supported by a Natural Environment Research Council (NERC) Co-operative Award in Science and Engineering (CASE) studentship with De Beers, awarded at the University of Bristol. We thank an anonymous referee and Barbara Scott who were the first reviewers of this paper. Their comments were helpful in strengthening the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Buse.

Additional information

Communicated by M. W. Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buse, B., Schumacher, J.C., Sparks, R.S.J. et al. Growth of bultfonteinite and hydrogarnet in metasomatized basalt xenoliths in the B/K9 kimberlite, Damtshaa, Botswana: insights into hydrothermal metamorphism in kimberlite pipes. Contrib Mineral Petrol 160, 533–550 (2010). https://doi.org/10.1007/s00410-010-0492-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-010-0492-4

Keywords

Navigation