Skip to main content

Advertisement

Log in

Petrogenesis of Fe–Ti oxides in amphibole-rich veins from the Lherz orogenic peridotite (Northeastern Pyrénées, France)

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Accessory, homogeneous ilmenite and rutile are important oxide phases in amphibole-rich high-pressure cumulate veins which crosscut the Lherz orogenic lherzolite massif. Those veins crystallized from alkaline melts at P = 1.2–1.5 GPa within the uppermost lithospheric mantle. Transitional basalts contaminated by peridotitic wall-rocks and then uncontaminated alkali basalts (basanites) reused the same vein conduits. Petrographic observations give evidence that Fe–Ti oxide saturation depends on the silica contents of each parental melt. The water-poor silica-rich transitional melts that generated websterites and plagioclase-rich clinopyroxenites reached early Ti-oxide saturation (1,200°C; 1.5 GPa). Rutile is as abundant as ilmenite. It is enriched with Nb–Zr–Hf by a factor of 10–100 relative to either amphibole or ilmenite. The amphibole pyroxenites and hornblendites crystallized from basanites reached late Fe–Ti oxide saturation after precipitation of amphibole, with ilmenite crystallizing along with phlogopite in the latter. The Lherz ilmenites are devoid of exsolution and contain very little trivalent iron. This compositional feature indicates more reducing crystallization conditions than usually inferred for alkali lavas and their megacrysts (FMQ ± 1). The veins incompletely equilibrated for redox conditions with their wall-rock peridotites which record more oxidizing conditions (FMQ ± 1). The veins also exchanged magnesium and chromium, as suggested by Cr-bearing, Mg-rich ilmenite (up to 44 mol% MgTiO3) in veins less than 3–4 cm thick. Mg-rich ilmenite megacrysts occurring in alkali basalts could be actually xenocrysts from veins similar in thickness to those occurring at the Lherz massif, although crystallized from more oxidized magmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andersen T, O’Reilly SY, Griffin WL (1984) The trapped fluids phase in upper mantle xenoliths from Victoria, Australia: implications for mantle metasomatism. Contrib Miner Petrol 88:45–72

    Article  Google Scholar 

  • Andersen DJ, Lindsley DH, Davidson PM (1993) QUILF: a Pascal program to assess equilibria among Fe–Mg–Mn–Ti oxides, pyroxenes, olivine, and quartz. Comput Geosci 19:1333–1350

    Article  Google Scholar 

  • Azambre B, Rossy M, Albarède F (1992) Petrology of the alkaline magmatism from the Cretaceous North-Pyrenean Rift Zone (France and Spain). Eur J Miner 4:813–834

    Google Scholar 

  • Bodinier J-L, Fabriès J, Lorand J-P, Dostal J, Dupuy C (1987) Petrogenesis of amphibole-pyroxenite veins from the Lherz and Freychinède ultramafic bodies (Ariège, French Pyrenees). Bull Miner 110:345–359

    Google Scholar 

  • Bodinier J-L, Vasseur G, Vernières J, Dupuy C, Fabriès J (1990) Mechanisms of mantle metasomatism: geochemical evidence from the Lherz orogenic peridotite. J Petrol 31:597–628

    Google Scholar 

  • Bodinier J-L, Merlet C, Bedini RM, Simien M, Reimaidi M, Garrido CJ (1996) Distribution of niobium, tantalum, and other highly incompatible trace elements in the lithospheric mantle: the spinel paradox. Geochim Cosmochim Acta 60:545–550

    Article  Google Scholar 

  • Buddington AF, Lindsley DH (1964) Iron–titanium oxide minerals and synthetic equivalents. J Petrol 5:310–357

    Google Scholar 

  • Cawthorn RG, Biggar G (1993) Crystallization of titaniferous chromite, Mg-rich ilmenite and armalcolite in tholeiitic suites in the Karoo Igneous Province. Contrib Miner Petrol 114:221–235

    Article  Google Scholar 

  • Conquéré F (1971) Les pyroxénolites à amphibole et les amphibololites associées aux lherzolites du gisement de Lherz (Ariège; France): un exemple du rôle de l’eau au cours de la cristallisation fractionnée des liquides issus de la fusion partielle des lherzolites. Contrib Miner Petrol 33:32–61

    Article  Google Scholar 

  • Conquéré F, Fabriès J (1984) Chemical disequilibrium and its thermal significance in spinel-peridotites from the Lherz and Freychinede ultramafic bodies (Ariège; French Pyrenees). In: Kornprobst J (ed) Kimberlites II: The mantle and crust-mantle relationships. Elsevier, Amsterdam, pp 319–332

    Google Scholar 

  • Cornen G, Girardeau J, Monnier C (1999) Basalts, underplated gabbros and pyroxenites record the rifting process of the West Iberian margin. Miner Petrol 67:111–142

    Article  Google Scholar 

  • Downes H, Bodinier J-L, Thirlwall MF, Lorand J-P, Fabriès J (1991) REE and Sr–Nd isotopic geochemistry of Eastern Pyrenean peridotite massifs: Paleozoïc sub-continental lithosphere modified by subsequent metasomatism? In: Menzies MA et al (eds) Orogenic lherzolites and mantle processes. J Petrol, pp 97–116

  • Fabriès J, Lorand J-P, Bodinier J-L, Dupuy C (1991) Evolution of the upper mantle beneath the Pyrenees during the Mesozoïc: evidences from spinel lherzolite orogenic massifs. In Menzies MA et al (eds) Orogenic lherzolites and mantle processes. J Petrol, pp 55–76

  • Fabriès J, Lorand J-P, Guiraud M (2001) Petrogenesis of mantle-derived amphibole-rich veins and relationships between amphibole-pyroxenites and hornblendites in the Lherz orogenic massif. Contrib Miner Petrol 140:383–403

    Article  Google Scholar 

  • Finger LW (1972) The uncertainty in calculated ferric iron content of a microprobe analysis? Carnegie Inst Wash Yearbook 71:600–603

    Google Scholar 

  • Foley SF (1988) The genesis of continental basic alkaline magmas: an interpretation in terms of redox melting. In: Menzies MA, Cox KG (eds) Oceanic and continental lithosphere; similarities and differences. J Petrol, pp 139–162

  • Freer R (1981a) Diffusion in silicate minerals and glasses: a data digest and guide to the literature. Contrib Miner Petrol 76:440–454

    Article  Google Scholar 

  • Freer R (1981b) Interdiffusion studies in minerals with corundum structure: Al2–O3–Cr2O3. Prog Exp Petrol N E R C Publ Ser D 18:166–170

    Google Scholar 

  • Friel J, Harker RI, Ulmer GC (1977) Armalcolite stability as a function of pressure and oxygen fugacity. Geochim Cosmochim Acta 41:403–410

    Article  Google Scholar 

  • Frost BR, Lindsley DH (1991) Occurrence of iron titanium oxides in igneous rocks. In: Lindsley DH (ed) Oxide minerals: petrologic and magnetic significance. Rev Miner 25:433–468

  • Giorsho MS (1990) Thermodynamic properties of hematite–giekelite–ilemnite solid solutions. Contrib Miner Petrol 104:645–667

    Article  Google Scholar 

  • Green DH, Pearson NJ (1986) Ti-rich accessory phase saturation in hydrous mafic-felsic compositions at high P. T. Chem Geol 54:185–201

    Article  Google Scholar 

  • Green DH, Sobolev NV (1975) Coexisting garnets and ilmenites synthesized at high pressures from pyrolite and olivine basanite and their significance for kimberlitic assemblages. Contrib Miner Petrol 50:217–229

    Article  Google Scholar 

  • Grégoire M, Lorand J-P, O’Reilly SY, Cottin J-Y (2000a) Armalcolite-bearing, Ti-rich alkali veinlets and the budget of incompatible trace elements in some Kerguelen harzburgitic xenoliths. Geochim Cosmochim Acta 64:674–693

    Article  Google Scholar 

  • Grégoire M, Moine BN, O’Reilly SY, Cottin J-Y, Giret A (2000b) Trace element residence and partitioning in mantle xenoliths metasomatized by Highly alkaline, silicate- and carbonate-rich melts (Kerguelen Islands, Indian Ocean). J Petrol 41:477–509

    Article  Google Scholar 

  • Grégoire M, Bell DR, Le Roex AP (2002) Trace element geochemistry of glimmerite and MARID mantle xenoliths: their classification and their relationship to kimberlites and to phlogopite-bearing peridotites revisited. Contrib Miner Petrol 142:603–625

    Google Scholar 

  • Haggerty SE, Tompkins LA (1984) Subsolidus reactions in kimberlitic ilmenites: exsolution, reduction and the redox state of the mantle. In: Kornprobst J (ed) Kimberlites 1: kimberlites and related rocks. Elsevier, Amsterdam, pp 335–357

    Google Scholar 

  • Haggerty SE, Hardie III RB, McMahon BM (1979) The mineral chemistry of ilmenite nodule associations from the Monastery diatreme. In: Boyd FR, Meyer HOA (eds) The mantle sample. Proceedings of 2nd international kimberlite conference, vol 2. Am. Geophys Union, Washington DC, pp 249–256

  • Haggerty SE, Moore AE, Erlank AJ (1985) Macrocryst Fe–Ti oxides in olivine melilites from Namaqualand-Bushmanland, South Africa. Contrib Miner Petrol 91:163–170

    Article  Google Scholar 

  • Hart SR, Dunn P (1993) Experimental Cpx/melt partitioning of 24 trace elements. Contrib Miner Petrol 113:1–8

    Article  Google Scholar 

  • Helz RT, Thornber CR (1987) Geothermometry of Kilauea Iki lava lake. Hawaii Bull Volc 49:651–668

  • Hornig I, Wörner G (1991) Zirconolite-bearing ultra-potassic veins in a mantle-xenolith from Mt Melbourne Volcanic Field, Victoria Land, Antarctica. Contrib Miner Petrol 106:355–366

    Article  Google Scholar 

  • Ionov DA, Grégoire M, Ashchepkov I (1999) Feldspar–Ti oxide metasomatism in off-cratonic continental and oceanic upper mantle. Earth Planet Sci Lett 165:37–44

    Article  Google Scholar 

  • Irving AJ, Frey FA (1984) Trace element abundance in megacrysts and their host basalts: constraints on partition coefficients and megacryst genesis. Geochim Cosmochim Acta 48:1201–1227

    Article  Google Scholar 

  • Jang YD, Naslund HR (2003) Major and trace element variation in ilmenite in the Skaergaard intrusion: petrologic implications. Chem Geol 193:109–125

    Article  Google Scholar 

  • Kalfoun K, Ionov D, Merlet C (2002) HFSE residence and Nb/Ta ratios in metasomatised, rutile-bearing mantle peridotites. Earth Planet Sci Lett 199:49–65

    Article  Google Scholar 

  • Klemme S, Gunther D, Hametner K, Prowatke S, Zack T (2006) The partitioning of trace elements between ilmenite, ulvospinel, armalcolite and silicate melts with implications for the early differentiation of the moon. Chem Geol 234:251–263

    Article  Google Scholar 

  • Le Roux V, Bodinier J-L, Tommasi A, Alard O, Dautria J-M, Vauchez A, Riches AJV (2007) The Lherz spinel lherzolite: refertilized rather than pristine mantle. Earth Planet Sci Lett 259:599–612

    Article  Google Scholar 

  • Leblanc M, Dautria J-M, Girod M (1982) Magnesian ilmenitite xenoliths in a basanite from Tahalra, Ahaggar (Southern Algeria). Contrib Miner Petrol 79:347–357

    Article  Google Scholar 

  • Lindsley DH (1991) Experimental studies of oxide minerals. In: Lindsley DH (ed) Oxide minerals: petrologic and magnetic significance. Miner Soc Am Publ, pp 61–88

  • Lindsley DH, Kesson SE, Hartzman SE (1974) The stability of armalcolite: experimental studies in the system MgO–Fe–Ti–O. Geochimica Cosmochimica Acta Suppl 5(1):521–534

    Google Scholar 

  • Lorand J-P, Vétil J-Y, Fabriès J (1990) Fe–Ti oxide assemblages of the Lherz and Freychinède amphibole-rich veins (French Pyrenees). In: First international workshop on orogenic lherzolites and mantle processes. Blackwell, Oxford, pp 31 (abstract)

  • Lucas H, Muggeridge MT, Mc Conchie (1989) Iron in kimberlitic ilmenites and chromian spinels: a survey of analytical techniques. In Ross et al (eds) Kimberlites and related rocks, vol 1. Geol Soc of Austr. Spec Publ 14, pp 311–322

  • MacPherson E, Thirwall MF, Parkinson IJ, Menzies MA, Bodinier J-L, Woodland A-B, Bussod G (1996) Geochemistry of metasomatism adjacent to amphibole-bearing veins in the Lherz peridotite massif. Chem Geol 134:135–157

    Article  Google Scholar 

  • Menzies MA, Rogers N, Tindle A, Hawkesworth CJ (1987) Metasomatic and enrichment processes in lithospheric peridotites, an effect of asthenosphere-lithosphere interaction. In: Menzies MA, Hawkesworth CJ (eds) Mantle metasomatism. Academic press, London, pp 313–361

    Google Scholar 

  • Mitchell RH (1978) Geochemistry of magnesian ilmenites from kimberlites in South Africa and Lesotho. Lithos 10:29–37

    Article  Google Scholar 

  • Moine BN, Grégoire M, O’Reilly SY, Sheppard SM, Cottin J-Y (2001) High field strenght element fractionation in the upper mantle: evidence from amphibole-rich composite mantle xenoliths from the Kerguelen Islands (Indian Ocean). J Petrol 42:2145–2167

    Article  Google Scholar 

  • Mukasa SB, Shervais JW, Wilshire HG, Nielson JE (1991) Intrinsic Nd, Pb, ans Sr isotopic heterogeneities exhibited by the Lherz alpine peridotite massif, French Pyrenees. In: Menzies MA et al (eds) Orogenic lherzolites and mantle processes. J Petrol, pp 117–134

  • Pasteris JD (1985) Relationships between temperature and oxygen fugacity among Fe–Ti oxides in two regions of the Duluth Complex. Can Miner 23:111–127

    Google Scholar 

  • Sen G, Jones RE (1988) Exsolved silicate and oxide phases from clinopyroxenes in a single Hawaiian xenolith: implication for oxidation state of the Hawaiian upper mantle. Geology 16:69–72

    Article  Google Scholar 

  • Shaw CSJ, Thibault Y, Edgar AD, Llyod FE (1998) Mechanisms of orthopyroxene dissolution in silica-undersaturated melts at 1 atmosphere and implications for the origin of silica-rich glass in mantle xenoliths. Contrib Miner Petrol 132:354–370

    Article  Google Scholar 

  • Sobolev NV (1984) Kimberlites of the Siberian platform: their geological and mineralogical features. In: Glover J, Harris DG (eds) Kimberlites occurrences and origin: a basis for conceptual models in exploration. Geology department and University extension, University of Western Australia. Publication no. 8, pp. 275–287

  • Sobolev NV, Boktunov AI, Lavrentev U, Yu G, Pospelova LN (1971) Compositional characteristics of minerals associated with diamonds in the Mir pipe, Yakutia. Zap Vses Min Obsch 5:558–564

    Google Scholar 

  • Speidel DH (1970) Effect of magnesium on the iron–titanium oxides. Am J Sci 268:341–373

    Google Scholar 

  • Taylor WR, Green DH (1989) The role of reduced C–O–H fluids in mantle partial melting. In: Ross et al (eds) Kimberlites and related rocks, vol 2. Geol Soc of Austr. Spec Publ no. 14, pp 593–602

  • Thompson RN (1976) Chemistry of ilmenites crystallized within the anhydrous melting range of a tholeiite andesite at pressure between 5 and 26 kbar. Miner Mag 40:857–862

    Article  Google Scholar 

  • Upton BGJ, Thomas JE (1980) The Tugtutôq younger giant dyke complex, South Greenland: fractional crystallisation of transitional olivine basalt magma. J Petrol 21:167–198

    Google Scholar 

  • Vétil J-Y, Lorand J-P, Fabriès J (1988) Conditions de mise en place des filons riches en amphibole du massif ultramafique de Lherz (Pyrénées Ariégeoises, France). CR Acad Sci Paris Sér II 307:587–593

    Google Scholar 

  • Virgo D, Luth RW, Moats MA, Ulmer GC (1977) Constraints on the oxidation state of the mantle: an electrochemical and 57Fe Mössbauer study of mantle-derived ilmenites. Geochim Cosmochim Acta 52:1781–1794

    Article  Google Scholar 

  • Wilkinson JFG, Le Maitre RW (1987) Upper mantle amphiboles and micas and TiO2, K2O, and P2O5 abundances and 100 Mg/(Mg+Fe2+) ratios of common basalts and andesites: implications for modal mantle metasomatism and undepleted mantle compositions. J Petrol 28:37–73

    Google Scholar 

  • Woermann E, Hirshberg A, Lamprecht A (1969) Das System Hämatit–Ilmenit–Giekelith unter hohen Temperaturen und hohen Drucken. Forts Minerl 47:79–80

    Google Scholar 

  • Wones DR, Gilbert MC (1982) Amphiboles in the igneous environment. In: Veblin DR, Ribbe PH (eds) Amphiboles: petrology and experimental phase relations. Reviews in Mineralogy 9B, Washington DC, pp 355–390

  • Woodland AB, Kornprobst J, Wood BJ (1992) Oxygen thermobarometry of orogenic lherzolite massifs. J Petrol 33:203–230

    Google Scholar 

  • Woodland AB, Kornprobst J, McPherson E, Bodinier J-L, Menzies MA (1996) Metasomatic interactions in the lithospheric mantle: petrologic evidence from the Lherz massif, French Pyrenees. Chem Geol 134:83–112

    Article  Google Scholar 

  • Woodland AB, Kornprobst J, Tabit A (2006) Ferric iron in orogenic lherzolite massifs and controls of oxygen fugacity in the upper mantle. Lithos 89:222–241

    Article  Google Scholar 

  • Wyatt BA, Baumgartner M, Anckar E, Grutter H (2004) Compositional classification of ‘‘kimberlitic’’ and’’non-kimberlitic’’ ilmenite. Lithos 77:819–840

    Article  Google Scholar 

  • Xiong XL, Adam TJ, Green DH (2005) Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: implications for TTG genesis. Chem Geol 218:339–359

    Article  Google Scholar 

  • Zhao D, Essene EJ, Zhang Y (1999) An oxygen barometer for rutile–ilmenite assemblages: oxidation state of metasomatic agents in the mantle. Earth Planet Sci Lett 166:127–137

    Article  Google Scholar 

  • Zinngrebe E, Foley SF (1995) Metasomatism in mantle xenoliths from Gees, West Eifel, Germany: evidence for the genesis of calc-alkaline glasses and metasomatic Ca-enrichment. Contrib Miner Petrol 122:79–96

    Article  Google Scholar 

Download references

Acknowledgments

Financial support was provided by CNRS (UMR 7160). We dedicate this paper to our late colleague Prof. Jacques Fabriès who spent much time unravelling the petrogenesis of the Lherz amphibole-rich veins. The present version of the paper greatly benefited from comments of K.-N. Pang and Cliff Shaw; C. Ballhaus is warmly thanked for his editorial work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Lorand.

Additional information

Communicated by C. Ballhaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorand, JP., Gregoire, M. Petrogenesis of Fe–Ti oxides in amphibole-rich veins from the Lherz orogenic peridotite (Northeastern Pyrénées, France). Contrib Mineral Petrol 160, 99–113 (2010). https://doi.org/10.1007/s00410-009-0468-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-009-0468-4

Keywords

Navigation