Skip to main content
Log in

Heterogeneous distribution of phosphorus in olivine from otherwise well-equilibrated spinel peridotite xenoliths and its implications for the mantle geochemistry of lithium

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The major- and trace-element abundances of the coexisting phases of four metasomatized spinel peridotite xenoliths from the Anakies locality (SE Australia) were determined by electron microprobe and laser-ablation ICP-MS. The compositions of all phases are remarkably homogeneous, with the exception of phosphorus (P), lithium (Li) and sodium (Na) in olivine. These three elements are enriched in large parts of most olivine crystals due to a second metasomatic episode. Apart from these elements, all phases are in mutual equilibrium with respect to both their major- and trace-element compositions. Li and Na show a strong correlation with P in olivine, although molar Li + Na are an order of magnitude less than molar P, indicating that the substitution mechanism of these elements is more complex than the simple charge-balanced coupled exchange IVSi4+ + VI(FeMg)2+ = IVP5+ + VI(LiNa)+. We suggest that Li and Na are decorating octahedral-site cation vacancies formed by the original incorporation of P. Elemental maps revealed that the P zoning patterns are concentric in a few large olivine porphyroblasts, but form irregular patches in most crystals. This distribution of P is proposed to be the result of a two-stage process, whereby the initial concentric zoning, caused by its exceptionally sluggish diffusion after metasomatic influx, is broken up by extensive sub-solidus deformation and recrystallization, attesting to large grain-scale strains even within the lithosphere. Such strains must be an efficient means of ensuring trace-element equilibrium during partial melting. The association of Li with P in olivine may help to explain the variability of Li abundances in mantle minerals and to interpret Li diffusion experiments and Li isotopic fractionation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agrell SO, Charnley NR, Chinner GA (1998) Phosphoran olivine from Pine Canyon, Piute County, Utah. Mineral Mag 62:265–269. doi:10.1180/002646198547620

    Article  Google Scholar 

  • Boesenberg JS, Ebel DS, Hewins RH (2004) An experimental study of phosphoran olivine and its significance in main group Pallasites. In: 35th Lunar and Planetary Science Conference, USA, Abstract 1366

  • Bouman C, Elliott T, Vroon PZ (2004) Lithium inputs to subduction zones. Chem Geol 212:59–79. doi:10.1016/j.chemgeo.2004.08.004

    Article  Google Scholar 

  • Brenan JM, Neroda E, Lundstrom CC, Shaw HF, Ryerson FJ, Phinney DL (1998a) Behaviour of boron, beryllium, and lithium during melting and crystallization: constraints from mineral-melt partitioning experiments. Geochim Cosmochim Acta 62:2129–2141. doi:10.1016/S0016-7037(98)00131-8

    Article  Google Scholar 

  • Brenan JM, Ryerson FJ, Shaw HF (1998b) The role of aqueous fluids in the slab-to-mantle transfer of boron, beryllium, and lithium during subduction: experiments and models. Geochim Cosmochim Acta 62:3337–3347. doi:10.1016/S0016-7037(98)00224-5

    Article  Google Scholar 

  • Brey GP, Köhler T (1990) Geothermobarometry in 4-phase lherzolites: 2. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378

    Google Scholar 

  • Brooker RA, James RH, Blundy JD (2004) Trace elements and Li isotope systematics in Zabargad peridotites: evidence of ancient subduction processes in the Red Sea mantle. Chem Geol 212:179–204. doi:10.1016/j.chemgeo.2004.08.007

    Article  Google Scholar 

  • Brunet F, Chazot G (2001) Partitioning of phosphorus between olivine, clinopyroxene and silicate glass in a spinel lherzolite xenolith from Yemen. Chem Geol 176:51–72. doi:10.1016/S0009-2541(00)00351-X

    Article  Google Scholar 

  • Buseck PR (1977) Pallasite meteorites—mineralogy, petrology and geochemistry. Geochim Cosmochim Acta 41:711–740. doi:10.1016/0016-7037(77)90044-8

    Article  Google Scholar 

  • Buseck PR, Clark J (1984) Zaisho—a Pallasite containing pyroxene and phosphoran olivine. Mineral Mag 48:229–235. doi:10.1180/minmag.1984.048.347.06

    Article  Google Scholar 

  • Buseck PR, Holdsworth E (1977) Phosphate minerals in Pallasite meteorites. Mineral Mag 41:91–102. doi:10.1180/minmag.1977.041.317.14

    Article  Google Scholar 

  • Chan LH, Edmond JM, Thompson G, Gillis K (1992) Lithium isotopic composition of submarine basalts: implications for the lithium cycle in the oceans. Earth Planet Sci Lett 108:151–160. doi:10.1016/0012-821X(92)90067-6

    Article  Google Scholar 

  • Chan LH, Leeman WP, Plank T (2006) Lithium isotopic composition of marine sediments. Geochem Geophys Geosyst 7:Q06005. doi:10.1029/2005GC001202

    Article  Google Scholar 

  • Chazot G, Menzies MA, Harte B (1996) Determination of partition coefficients between apatite, clinopyroxene, amphibole and melt in natural spinel lherzolites from Yemen: implications for wet melting of the lithospheric mantle. Geochim Cosmochim Acta 60:423–437. doi:10.1016/0016-7037(95)00412-2

    Article  Google Scholar 

  • Cherniak DJ, Liang Y (2007) Rare earth element diffusion in natural enstatite. Geochim Cosmochim Acta 71:1324–1340. doi:10.1016/j.gca.2006.12.001

    Article  Google Scholar 

  • Colson RO, McKay GA, Taylor LA (1989) Charge balancing of trivalent trace elements in olivine and low Ca pyroxene: a test using experimental partitioning data. Geochim Cosmochim Acta 53:643–648. doi:10.1016/0016-7037(89)90007-0

    Article  Google Scholar 

  • Coogan LA, Kasemann SA, Chakraborty S (2005) Rates of hydrothermal cooling of new oceanic upper crust derived from lithium-geospeedometry. Earth Planet Sci Lett 240:415–424. doi:10.1016/j.epsl.2005.09.020

    Article  Google Scholar 

  • Dohmen R, Kasemann SA, Coogan LA, Chakraborty S (2007) Li diffusion in olivine. In: AGU Fall Meeting, EOS transactions supplement, Abstract MR13C-1396

  • Eggins SM, Kinsley LPJ, Shelley JMG (1998a) Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS. Appl Surf Sci 129:278–286. doi:10.1016/S0169-4332(97)00643-0

    Article  Google Scholar 

  • Eggins SM, Rudnick RL, McDonough WF (1998b) The composition of peridotites and their minerals: a laser-ablation ICP-MS study. Earth Planet Sci Lett 154:53–71. doi:10.1016/S0012-821X(97)00195-7

    Article  Google Scholar 

  • Elliott T, Jeffcoate A, Bouman C (2004) The terrestrial Li isotope cycle: light-weight constraints on mantle convection. Earth Planet Sci Lett 220:231–245. doi:10.1016/S0012-821X(04)00096-2

    Article  Google Scholar 

  • Elliott T, Thomas A, Jeffcoate A, Niu Y (2006) Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean ridge basalts. Nature 443:565–568. doi:10.1038/nature05144

    Article  Google Scholar 

  • Evans TM, O’Neill HStC, Tuff J (2008) The influence of melt composition on the partitioning of REEs, Y, Sc, Zr and Al between forsterite and melt in the system CMAS. Geochim Cosmochim Acta 72:5708–5721. doi:10.1016/j.gca.2008.09.017

    Article  Google Scholar 

  • Goodrich CA (1984) Phosphoran pyroxene and olivine in silicate inclusions in natural iron-carbon alloy, Disko-Island, Greenland. Geochim Cosmochim Acta 48:1115–1126. doi:10.1016/0016-7037(84)90202-3

    Article  Google Scholar 

  • Grant KJ, Wood BJ (2007) Lithium incorporation in olivine. In: VM Goldschmidt Conference, Geochim Cosmochim Acta 71, Supplement 1, Abstract A351

  • Green DH, Morgan JW, Heier KS (1968) Thorium, uranium and potassium abundances in peridotite inclusions and their host basalts. Earth Planet Sci Lett 4:155–166. doi:10.1016/0012-821X(68)90010-1

    Article  Google Scholar 

  • Griffin WL, O’Reilly SY, Stabel A (1988) Mantle metasomatism beneath western Victoria, Australia. 2. Isotopic geochemistry of Cr-diopside Iherzolites and Al-augite pyroxenites. Geochim Cosmochim Acta 52:449–459. doi:10.1016/0016-7037(88)90100-7

    Article  Google Scholar 

  • Halama R, McDonough WF, Rudnick RL, Bell K (2008) Tracking the lithium isotopic evolution of the mantle using carbonatites. Earth Planet Sci Lett 265:726–742. doi:10.1016/j.epsl.2007.11.007

    Article  Google Scholar 

  • Handler MR, Bennett VC, Esat TM (1997) The persistence of off-cratonic lithospheric mantle: Os isotopic systematics of variably metasomatised southeast Australian xenoliths. Earth Planet Sci Lett 151:61–75. doi:10.1016/S0012-821X(97)00118-0

    Article  Google Scholar 

  • Ionov DA, Bodinier J-L, Mukasa SB, Zanetti A (2002) Mechanisms and sources of mantle metasomatism: major and trace element compositions of peridotite xenoliths from Spitsbergen in the context of numerical modeling. J Petrol 43:2219–2259. doi:10.1093/petrology/43.12.2219

    Article  Google Scholar 

  • Jeffcoate AB, Elliott T, Kasemann SA, Ionov D, Cooper K, Brooker R (2007) Li isotope fractionation in peridotites and mafic melts. Geochim Cosmochim Acta 71:202–218. doi:10.1016/j.gca.2006.06.1611

    Article  Google Scholar 

  • Kent AJR, Rossman GR (2002) Hydrogen, lithium, and boron in mantle-derived olivine: the role of coupled substitutions. Am Mineral 87:1432–1436

    Google Scholar 

  • Kobayashi K, Tanaka R, Moriguti T, Shimizu K, Nakamura E (2004) Lithium, boron, and lead isotopic systematics of glass inclusions in olivines from Hawaiian lavas: Evidence for recycled components in the Hawaiian plume. Chem Geol 212:143–161. doi:10.1016/j.chemgeo.2004.08.050

    Article  Google Scholar 

  • Langmuir CH, Klein EM, Plank T (1992) Petrological systematics of mid-ocean ridge basalts: constraints on melt generation beneath ocean ridges. AGU Monogr 71:183–280

    Google Scholar 

  • Lundstrom CC, Chaussidon M, Hsui AT, Kelemen P, Zimmerman M (2005) Observations of Li isotopic variations in the Trinity Ophiolite: evidence for isotopic fractionation by diffusion during mantle melting. Geochim Cosmochim Acta 69:735–751. doi:10.1016/j.gca.2004.08.004

    Article  Google Scholar 

  • Magna T, Wiechert U, Halliday AN (2006) New constraints on the lithium isotope compositions of the Moon and terrestrial planets. Earth Planet Sci Lett 243:336–353. doi:10.1016/j.epsl.2006.01.005

    Article  Google Scholar 

  • Marschall HR, Poege von Strandmann PAE, Seitz H-M, Elliott T, Niu Y (2007) The lithium isotopic composition of orogenic eclogites and deep subducted slabs. Earth Planet Sci Lett 262:563–580. doi:10.1016/j.epsl.2007.08.005

    Article  Google Scholar 

  • McDonough WF, McCulloch MT (1987) The southeast Australian lithospheric mantle: isotopic and geochemical constraints on its growth and evolution. Earth Planet Sci Lett 86:327–340. doi:10.1016/0012-821X(87)90230-5

    Article  Google Scholar 

  • McDonough WF, McCulloch MT, Sun SS (1985) Isotopic and geochemical systematics in Tertiary-Recent basalts from southeastern Australia and implications for the evolution of the sub-continental lithosphere. Geochim Cosmochim Acta 49:2051–2067. doi:10.1016/0016-7037(85)90063-8

    Article  Google Scholar 

  • McKenzie D, Bickle MJ (1988) The volume of melt generated by extension of the lithosphere. J Petrol 29:625–679

    Google Scholar 

  • Mercier JCC, Nicolas A (1975) Textures and fabrics of upper-mantle peridotites as illustrated by xenoliths from basalts. J Petrol 16:454–487

    Google Scholar 

  • Milman-Barris MS, Beckett JR, Baker MB, Hofmann AE, Morgan Z, Crowley MR, Vielzeuf D, Stolper E (2008) Zoning of phosphorus in igneous olivine. Contrib Mineral Petrol 155:739–765. doi:10.1007/s00410-007-0268-7

    Article  Google Scholar 

  • Nishio Y, Yamamoto J, Sumino H, Matsumoto T, Prikhod’ko VS, Arai S (2004) Lithium isotopic systematics of the mantle-derived ultramafic xenoliths: implications for EM1 origin. Earth Planet Sci Lett 217:245–261. doi:10.1016/S0012-821X(03)00606-X

    Article  Google Scholar 

  • Nishio Y, Nakai S, Kosigo T, Barczus HG (2005) Lithium, strontium and neodymium isotopic compositions of oceanic island basalts in the Polynesian region: constraints on a Polynesian HIMU origin. Geochem J 39:91–103. doi:10.2343/geochemj.39.91

    Article  Google Scholar 

  • Norman MD (1998) Melting and metasomatism in the continental lithosphere: laser ablation ICPMS analysis of minerals in spinel lherzolites from eastern Australia. Contrib Mineral Petrol 130:240–255. doi:10.1007/s004100050363

    Article  Google Scholar 

  • O’Neill HStC, Mallmann G (2007) The P/Nd ratio of basalt as an indicator of pyroxenite in its source. In: VM Goldschmidt Conference, Geochim Cosmochim Acta 71, Supplement 1, Abstract A741

  • O’Reilly SY, Griffin WL (1988) Mantle metasomatism beneath western Victoria, Australia. 1. Metasomatic processes in Cr-diopside lherzolites. Geochim Cosmochim Acta 52:433–447. doi:10.1016/0016-7037(88)90099-3

    Article  Google Scholar 

  • Ottolini L, Le Fevre B, Vannucci R (2004) Direct assessment of mantle boron and lithium contents and distribution by SIMS analyses of peridotite minerals. Earth Planet Sci Lett 228:19–36. doi:10.1016/j.epsl.2004.09.027

    Article  Google Scholar 

  • Palme H, O’Neill HStC (2003) Cosmochemical estimates of mantle composition. In: Carlson RW (ed). Treatise on Geochemistry, vol 2, pp 1–38

  • Parkinson IJ, Hammond SJ, James RH, Rogers NW (2007) High-temperature lithium isotope fractionation: insights from lithium isotope diffusion in magmatic systems. Earth Planet Sci Lett 257:609–621. doi:10.1016/j.epsl.2007.03.023

    Article  Google Scholar 

  • Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newsl 21:115–144. doi:10.1111/j.1751-908X.1997.tb00538.x

    Article  Google Scholar 

  • Richter FM, Davis AM, DePaolo DJ, Watson EB (2003) Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochim Cosmochim Acta 67:3905–3923. doi:10.1016/S0016-7037(03)00174-1

    Article  Google Scholar 

  • Rudnick RL, Ionov DA (2007) Lithium elemental and isotopic disequilibrium in minerals from peridotite xenoliths from far-east Russia: product of recent melt/fluid-rock reaction. Earth Planet Sci Lett 256:278–293. doi:10.1016/j.epsl.2007.01.035

    Article  Google Scholar 

  • Ryan JG, Langmuir CH (1987) The systematics of lithium abundances in young volcanic rocks. Geochim Cosmochim Acta 51:1727–1741. doi:10.1016/0016-7037(87)90351-6

    Article  Google Scholar 

  • Seitz HM, Woodland AB (2000) The distribution of lithium in peridotitic and pyroxenitic mantle lithologies: an indicator of magmatic and metasomatic processes. Chem Geol 166:47–64. doi:10.1016/S0009-2541(99)00184-9

    Article  Google Scholar 

  • Seitz HM, Brey GP, Lahaye Y, Durali S, Weyer S (2004) Lithium isotopic signatures of peridotite xenoliths and isotopic fractionation at high temperature between olivine and pyroxenes. Chem Geol 212:163–177. doi:10.1016/j.chemgeo.2004.08.009

    Article  Google Scholar 

  • Self PG, Buseck PR (1983) High-resolution structure determination by ALCHEMI. In: 41st annual meeting of the electron microscopy society of America, pp 178–181

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767. doi:10.1107/S0567739476001551

    Article  Google Scholar 

  • Spandler C, O’Neill HStC (2006) Trace-element diffusion coefficients in olivine. In: AGU Fall Meeting, EOS Transactions, Supplement 87(52), Abstract V53E-02

  • Spandler C, O’Neill HStC (2009) Diffusion and partition coefficients of minor and trace elements in San Carlos olivine at 1300°C with some geochemical implications. Contrib Mineral Petrol (in review)

  • Spandler C, O’Neill HStC, Kamenetsky VS (2007) Survival times of anomalous melt inclusions from element diffusion in olivine and chromite. Nature 447:303–306. doi:10.1038/nature05759

    Article  Google Scholar 

  • Teng FZ, McDonough WF, Rudnick RL, Walker RJ (2006) Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite. Earth Planet Sci Lett 243:701–710. doi:10.1016/j.epsl.2006.01.036

    Article  Google Scholar 

  • Tomascak PB (2004) Developments in the understanding and application of lithium isotopes in the earth and planetary sciences. In: Johnson CM et al (eds) Geochemistry of non-traditional stable isotopes, reviews in mineralogy and geochemistry, vol 55, pp 153–195

  • Tomascak PB, Tera F, Helz RT, Walker RJ (1999) The absence of lithium isotope fractionation during basalt differentiation: new measurements by multicollector sector ICP-MS. Geochim Cosmochim Acta 63:907–910. doi:10.1016/S0016-7037(98)00318-4

    Article  Google Scholar 

  • Tomascak PB, Langmuir CH, le Roux PJ, Shirey SB (2008) Lithium isotopes in global mid-ocean ridge basalts. Geochim Cosmochim Acta 72:1626–1637. doi:10.1016/j.gca.2007.12.021

    Article  Google Scholar 

  • Tropper P, Recheis A, Konzett J (2004) Pyrometamorphic formation of phosphorus-rich olivines in partially molten metapelitic gneisses from a prehistoric sacrificial burning site (Otz Valley, Tyrol, Austria). Eur J Mineral 16:631–640. doi:10.1127/0935-1221/2004/0016-0631

    Article  Google Scholar 

  • van Orman JA, Grove TL, Shimizu N (2001) Rare earth element diffusion in diopside: influence of temperature, pressure, and ionic radius, and an elastic model for diffusion in silicates. Contrib Mineral Petrol 141:687–703

    Google Scholar 

  • Wagner C, Deloule E (2007) Behaviour of Li and its isotopes during metasomatism of French Massif Central lherzolites. Geochim Cosmochim Acta 71:4279–4296. doi:10.1016/j.gca.2007.06.010

    Article  Google Scholar 

  • Wan Z, Coogan LA, Canil D (2008) Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometry. Am Mineral 93:1142–1147. doi:10.2138/am.2008.2758

    Article  Google Scholar 

  • Wang Y, Hua X, Hsu W (2006) Phosphoran-olivine in opaque assemblages of the Ningqiang carbonaceous chondrite: Implications to their precursors. In: 37th Lunar and Planetary Science Conference, USA, Abstract 1504

  • Wells PRA (1977) Pyroxene thermometry in simple and complex systems. Contrib Mineral Petrol 62:129–139. doi:10.1007/BF00372872

    Article  Google Scholar 

  • Witt G, Seck HA (1987) Temperature history of sheared mantle xenoliths from the West Eifel, West Germany: evidence for mantle diapirism beneath the Rhenish Massif. J Petrol 28:475–493

    Google Scholar 

  • Witt-Eickschen G, O’Neill HStC (2005) The effect of temperature on the equilibrium distribution of trace elements between clinopyroxene, orthopyroxene, olivine and spinel in upper mantle peridotite. Chem Geol 221:65–101. doi:10.1016/j.chemgeo.2005.04.005

    Article  Google Scholar 

  • Woodland AB, Seitz HM, Yaxley GM (2004) Varying behaviour of Li in metasomatised spinel peridotite xenoliths from western Victoria, Australia. Lithos 75:55–66. doi:10.1016/j.lithos.2003.12.014

    Article  Google Scholar 

  • Wunder B, Meixner A, Romer RL, Heinrich W (2006) Temperature-dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids. Contrib Mineral Petrol 151:112–120. doi:10.1007/s00410-005-0049-0

    Article  Google Scholar 

  • Yaxley GM, Kamenetsky V (1999) In situ origin for glass in mantle xenoliths from southeastern Australia: Insights from trace element compositions of glasses and metasomatic phases. Earth Planet Sci Lett 172:97–109. doi:10.1016/S0012-821X(99)00196-X

    Article  Google Scholar 

  • Yaxley GM, Green DH, Kamenetsky V (1998) Carbonatite metasomatism in the southeastern Australian lithosphere. J Petrol 39:1917–1930. doi:10.1093/petrology/39.11.1917

    Article  Google Scholar 

  • Zack T, Tomascak PB, Rudnick RL, Dalpé C, McDonough WF (2003) Extremely light Li in orogenic eclogites: the role of isotope fractionation during dehydration in subducted oceanic crust. Earth Planet Sci Lett 208:279–290. doi:10.1016/S0012-821X(03)00035-9

    Article  Google Scholar 

  • Zindler A, Jagoutz E (1988) Mantle cryptology. Geochim Cosmochim Acta 52:319–333. doi:10.1016/0016-7037(88)90087-7

    Article  Google Scholar 

Download references

Acknowledgments

G.M. was supported by a Ph.D. scholarship (Grant No. 200520/2004-0) of the Brazilian National Council for Scientific and Technological Development (CNPq). Mike Shelley, Charlotte Allen, Charles Magee and Ashley Norris provided invaluable technical assistance during the course of this study. Paul Tomascak and three anonymous reviewers are thanked for their suggestions and Chris Ballhaus for the efficient editorial handling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme Mallmann.

Additional information

Communicated by C. Ballhaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallmann, G., O’Neill, H.S.C. & Klemme, S. Heterogeneous distribution of phosphorus in olivine from otherwise well-equilibrated spinel peridotite xenoliths and its implications for the mantle geochemistry of lithium. Contrib Mineral Petrol 158, 485–504 (2009). https://doi.org/10.1007/s00410-009-0393-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-009-0393-6

Keywords

Navigation