Skip to main content
Log in

The Mammoth Peak sheeted complex, Tuolumne batholith, Sierra Nevada, California: a record of initial growth or late thermal contraction in a magma chamber?

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Mammoth Peak sheeted intrusive complex formed in the interior of a ~7–10 km deep magma chamber, specifically in the Half Dome granodiorite of the Tuolumne batholith, central Sierra Nevada, CA (USA). The sheets consist of fractionated melts with accumulated hornblende, biotite, magnetite, titanite, apatite, and zircon. The accumulation, especially of titanite, had a profound effect on minor and trace elements (Nb, Ta, Ti, REE, U, Th, P, Zr, Hf, etc.), increasing their contents up to five to six times. Our thermal–mechanical modeling using the finite element method shows that cooling-generated tensile stresses resulted in the inward propagation of two perpendicular sets of dilational cracks in the host granodiorite. We interpret the sheeted complex to have formed by a crack-seal mechanism in a high strength, crystal-rich mush, whereby outward younging pulses of fractionated magma were injected into these syn-magmatic cracks at the margin of an active magma chamber. Thermal–mechanical instabilities developed after the assembly of the sheeted complex, which was then overprinted by late ~NW–SE magmatic foliation. This case example provides a cautionary note regarding the interpretation that sheeted zones in large granitoid plutons imply a diking mechanism of growth because the sheeted/dike complexes in plutons (1) may display inverse growth directions from the growth of the overall intrusive sequence; (2) need not record initial chamber construction and instead may reflect late pulsing of magma within an already constructed magma chamber; (3) have an overprinting magmatic fabric indicating the continued presence of melt after construction of sheeted complexes and thus a prolonged thermal history as compared to dikes; and (4) because the scale of the observed sheeted complexes may be small (<1%) in comparison to large homogenous parts of plutons, in which there is no evidence for sheeting or diking. Thus, where extensive dike complexes in plutons are absent, such as in much of the Tuolumne batholith, the application of an incremental diking model to explain chamber construction is at best speculative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. For the sake of simplicity, in the following text the descriptive term “sheet” is used with no mechanical or genetic meaning, i.e., for any planar magmatic body bounded by intrusive contacts. The sheet can contain several modally graded layers.

References

  • Ague JJ, Brimhall GH (1988) Magmatic arc asymmetry and distribution of anomalous plutonic belts in the batholiths of California: effects of assimilation, crustal thickness, and depth of crystallization. Geol Soc Am Bull 100:912–927. doi:10.1130/0016-7606(1988)100<0912:MAAADO>2.3.CO;2

    Article  Google Scholar 

  • Archanjo CJ, Fetter AH (2004) Emplacement setting of the granite sheeted pluton of Esperança (Brasiliano orogen, northeastern Brazil). Precambrian Res 135:193–215. doi:10.1016/j.precamres.2004.08.008

    Article  Google Scholar 

  • Barbarin B (1991) Enclaves of the Mesozoic calc-alkaline granitoids of the Sierra Nevada Batholith, California. In: Didier J, Barbarin B (eds) Enclaves and granite petrology. Elsevier, Amsterdam, pp 135–154

    Google Scholar 

  • Barbarin B (2005) Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts. Lithos 80:155–177. doi:10.1016/j.lithos.2004.05.010

    Article  Google Scholar 

  • Barbey P, Gasquet D, Pin C, Bourgeix AL (2008) Igneous banding, schlieren and mafic enclaves in calc-alkaline granites: the Budduso pluton (Sardinia). Lithos 104:147–163. doi:10.1016/j.lithos.2007.12.004

    Article  Google Scholar 

  • Bartley JM, Glazner AF, Coleman DS (2005) Distinguishing pluton emplacement mechanisms. GSA Abstracts with Programs 37:38

    Google Scholar 

  • Bartley JM, Coleman DS, Glazner AF (2008) Incremental pluton emplacement by magmatic crack-seal. Trans R Soc Edinb Earth Sci 97:383–396

    Google Scholar 

  • Bateman PC (1992) Plutonism in the Central part of Sierra Nevada Batholith, California. USGS professional paper 1483, pp 1–186

  • Bateman PC, Chappell BW (1979) Crystallization, fractionation, and solidification of the Tuolumne Intrusive Series, Yosemite National Park, California. Geol Soc Am Bull 90:465–482. doi:10.1130/0016-7606(1979)90<465:CFASOT>2.0.CO;2

    Article  Google Scholar 

  • Bergantz GW (2000) On the dynamics of magma mixing by reintrusion: implications for pluton assembly processes. J Struct Geol 22:1297–1309. doi:10.1016/S0191-8141(00)00053-5

    Article  Google Scholar 

  • Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114

    Google Scholar 

  • Bracciali L, Paterson SR, Memeti V, Rocchi S, Matzel J, Mundil R (2008) Build-up of the Tuolumne Batholith, California: the Johnson Granite Porphyry. LASI III Conference Abstract

  • Brown EH, McClelland WC (2000) Pluton emplacement by sheeting and vertical ballooning in part of the southeast Coast Plutonic Complex, British Columbia. Geol Soc Am Bull 112:708–719. doi:10.1130/0016-7606(2000)112<0708:PEBSAV>2.3.CO;2

    Article  Google Scholar 

  • Burgess SD, Miller JS (2008) Construction, solidification and internal differentiation of a large felsic arc pluton: Cathedral Peak granodiorite, Sierra Nevada Batholith. In: Annen C, Zellmer GF (eds) Dynamics of crustal magma transfer, storage and differentiation, vol 304. Geol Soc London, Special Publications, pp 203–234

  • Čermák V, Huckenholz HG, Rybach L, Schmid R, Wohlenberg J (1982) Physical properties of rocks. In: Angenheiser M (ed) Landolt–Boernstein, Numerical data and functional relationships in Science and Technology, Group V: Geophysics and Space Research, pp 305–370

  • Clarke DB, Clarke GKC (1998) Layered granodiorites at Chebucto Head, South Mountain batholith, Nova Scotia. J Struct Geol 20:1305–1324. doi:10.1016/S0191-8141(98)00067-4

    Article  Google Scholar 

  • Clemens JD (1998) Observations on the origins and ascent mechanisms of granitic magmas. J Geol Soc London 155:843–851. doi:10.1144/gsjgs.155.5.0843

    Article  Google Scholar 

  • Clemens JD, Mawer CK (1992) Granitic magma transport by fracture propagation. Tectonophysics 204:339–360. doi:10.1016/0040-1951(92)90316-X

    Article  Google Scholar 

  • Coleman DS, Gray W, Glazner AF (2004) Rethinking the emplacement and evolution of zoned plutons: geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology 32:433–436. doi:10.1130/G20220.1

    Google Scholar 

  • Coleman DS, Bartley JM, Glazner AF, Law RD (2005) Incremental assembly and emplacement of Mesozoic plutons in the Sierra Nevada and White and Inyo Ranges, California. Geol Soc Am field trip guide, pp 1–59

  • Decitre S, Gasquet D, Marignac C (2002) Genesis of orbicular granitic rocks from Ploumanac’h plutonic complex (Brittany, France); petrographical, mineralogical and geochemical constraints. Eur J Mineral 14:715–731. doi:10.1127/0935-1221/2002/0014-0715

    Article  Google Scholar 

  • Didier J, Barbarin B (1991) The different types of enclaves in granites—nomenclature. In: Didier J, Barbarin B (eds) Enclaves and granite petrology. Elsevier, Amsterdam, pp 19–24

    Google Scholar 

  • du Bray EA, Harlan SS (1996) The Eocene Big Timber Stock, south-central Montana; development of extensive compositional variation in an arc-related intrusion by side-wall crystallization and cumulate glomerocryst remixing. Geol Soc Am Bull 108:1404–1424. doi:10.1130/0016-7606(1996)108<1404:TEBTSS>2.3.CO;2

    Article  Google Scholar 

  • Duke EF, Redden JA, Papike JJ (1988) Calamity Peak granite–pegmatite complex, Black Hills, South Dakota: Part I Structure and emplacement. Geol Soc Am Bull 100:825–840. doi:10.1130/0016-7606(1988)100<0825:CPLGPC>2.3.CO;2

    Article  Google Scholar 

  • Fowler TJ (1994) Sheeted and bulbous pluton intrusion mechanisms of a small granitoid from Southeastern Australia—implications for dyke-to-pluton transformation during emplacement. Tectonophysics 234:197–215. doi:10.1016/0040-1951(94)90211-9

    Article  Google Scholar 

  • Glazner AF, Bartley JM, Coleman DS, Gray W, Taylor RZ (2004) Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today 14:4–11. doi:10.1130/1052-5173(2004)014<0004:APAOMO>2.0.CO;2

    Article  Google Scholar 

  • Glazner AF, Coleman DS, Bartley JM (2008) The tenuous connection between high-silica rhyolites and granodiorite plutons. Geology 36:183–186. doi:10.1130/G24496A.1

    Article  Google Scholar 

  • Grant JA (1986) The isocon diagram—a simple solution to Gresens equation for metasomatic alteration. Econ Geol 81:1976–1982

    Article  Google Scholar 

  • Grant JA (2005) Isocon analysis: a brief review of the method and applications. Phys Chem Earth 30:997–1004

    Google Scholar 

  • Gray W, Glazner AF, Coleman DS, Bartley JM (2008) Long-term geochemical variability of the Late Cretaceous Tuolumne Intrusive Suite, central Sierra Nevada, California. In: Annen C, Zellmer GF (eds) Dynamics of crustal magma transfer, storage and differentiation, vol 304. Geol Soc London, Special Publications, pp 183–201

  • Gresens RL (1967) Composition–volume relationships of metasomatism. Chem Geol 2:47–55. doi:10.1016/0009-2541(67)90004-6

    Article  Google Scholar 

  • Gromet LP, Silver LT (1983) Rare earth element distribution among minerals in a granodiorite and their petrogenetic implications. Geochim Cosmochim Acta 47:925–939. doi:10.1016/0016-7037(83)90158-8

    Article  Google Scholar 

  • Heuze FE (1983) High-temperature mechanical, physical and thermal properties of granitic rocks. A review. Int J Rock Mech Min Sci 20:3–10. doi:10.1016/0148-9062(83)91609-1

    Article  Google Scholar 

  • Huber NK, Bateman PC, Wahrhafting C (1989) Geologic map of Yosemite National Park and vicinity, California, 1:125,000. US Geological Survey, map I-1874

  • Hutchison CS (1975) The norm, its variations, their calculation and relationships. Schweiz Mineral Petrogr Mitt 55:243–256

    Google Scholar 

  • Hutton DHW (1982) A tectonic model for the emplacement of the Main Donegal Granite, NW Ireland. J Geol Soc London 139:615–631. doi:10.1144/gsjgs.139.5.0615

    Article  Google Scholar 

  • Hutton DHW (1988) Igneous emplacement in a shear-zone termination: the biotite granite at Strontian, Scotland. Geol Soc Am Bull 100:1392–1399. doi:10.1130/0016-7606(1988)100<1392:IEIASZ>2.3.CO;2

    Article  Google Scholar 

  • Hutton DHW (1992) Granite sheeted complexes: evidence for the dyking ascent mechanism. Trans R Soc Edinb Earth Sci 83:377–382

    Google Scholar 

  • Hutton DHW, Dempster TJ, Brown PE, Becker SD (1990) A new mechanism of granite emplacement: intrusion in active shear zones. Nature 343:452–455. doi:10.1038/343452a0

    Article  Google Scholar 

  • Ingram GM, Hutton DHW (1994) The Great Tonalite Sill: emplacement into a contractional shear zone and implications for Late Cretaceous to early Eocene tectonics in southeastern Alaska and British Columbia. Geol Soc Am Bull 106:715–728. doi:10.1130/0016-7606(1994)106<0715:TGTSEI>2.3.CO;2

    Article  Google Scholar 

  • Irvine TM, Baragar WR (1971) A guide to the chemical classification of common volcanic rocks. Can J Earth Sci 8:523–548

    Google Scholar 

  • Janoušek V, Bowes DR, Rogers G, Farrow CM, Jelínek E (2000) Modelling diverse processes in the petrogenesis of a composite batholith: the Central Bohemian Pluton, Central European Hercynides. J Petrol 41:511–543. doi:10.1093/petrology/41.4.511

    Article  Google Scholar 

  • Janoušek V, Farrow CM, Erban V (2006) Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). J Petrol 47:1255–1259. doi:10.1093/petrology/egl013

    Article  Google Scholar 

  • Jerram DA, Cheadle MJ, Philpotts AR (2003) Quantifying the building blocks of igneous rocks: are clustered crystal frameworks the foundation? J Petrol 44:2033–2051. doi:10.1093/petrology/egg069

    Article  Google Scholar 

  • Kistler RW, Fleck RJ (1994) Field guide for a transect of the Central Sierra Nevada, California: geochronology and isotope geology. USGS Open-File Report 94-267, pp 1–50

  • Kistler RW, Chappell BW, Peck DL, Bateman PC (1986) Isotopic variation in the Tuolumne intrusive suite, central Sierra Nevada, California. Contrib Mineral Petrol 94:205–220. doi:10.1007/BF00592937

    Article  Google Scholar 

  • Klein M, Stosch HG, Jeck HA (1997) Partitioning of HFSE and REE between amphibole and quartz dioritic to tonalitic melts: an experimental study. Chem Geol 138:257–271. doi:10.1016/S0009-2541(97)00019-3

    Article  Google Scholar 

  • Lafrance B, John BE (2001) Sheeting and dyking emplacement of the Gunnison annular complex, SW Colorado. J Struct Geol 23:1141–1150. doi:10.1016/S0191-8141(00)00181-4

    Article  Google Scholar 

  • Lama RD, Vutukuri VS (1978) Handbook on mechanical properties of rocks; testing techniques and results, Series on rock and soil mechanics 3, vol 1–3. Trans Tech Publications, 1162 pp

  • Lindh A, Nasstrom H (2006) Crystallization of orbicular rocks exemplified by the Slattemossa occurrence, southeastern Sweden. Geol Mag 143:713–722. doi:10.1017/S001675680600210X

    Article  Google Scholar 

  • Mahan KH, Bartley JM, Coleman DS, Glazner AF, Carl BS (2003) Sheeted intrusion of the synkinematic McDoogle pluton, Sierra Nevada, California. Geol Soc Am Bull 115:1570–1582. doi:10.1130/B22083.1

    Article  Google Scholar 

  • Martin H (1987) Petrogenesis of Archaean trondhjemites, tonalites, and granodiorites from eastern Finland: major and trace element geochemistry. J Petrol 28:921–953

    Google Scholar 

  • Matzel J, Mundil R, Miller J, Wooden J, Mazdab F, Paterson S, Memeti V (2007) Growth of the Tuolumne Batholith: zircon crystallization temperature, age and trace element data. Eos Trans AGU 88:V44C-08

    Google Scholar 

  • McNulty BA, Tong W, Tobisch OT (1996) Assembly of a dike-fed magma chamber: the Jackass Lakes pluton, central Sierra Nevada, California. Geol Soc Am Bull 108:926–940. doi:10.1130/0016-7606(1996)108<0926:AOADFM>2.3.CO;2

    Article  Google Scholar 

  • Middlemost EAK (1985) Magmas and magmatic rocks. Longman, London

    Google Scholar 

  • Miller RB, Paterson SR (2001) Construction of mid-crustal sheeted plutons: examples from the north Cascades, Washington. Geol Soc Am Bull 113:1423–1442. doi:10.1130/0016-7606(2001)113<1423:COMCSP>2.0.CO;2

    Article  Google Scholar 

  • Miller JS, Matzel JEP, Miller CF, Burgess SD, Miller RB (2007) Zircon growth and recycling during the assembly of large, composite arc plutons. J Volcanol Geotherm Res 167:282–299. doi:10.1016/j.jvolgeores.2007.04.019

    Article  Google Scholar 

  • Moore JG, Lockwood JP (1973) Origin of comb layering and orbicular structure, Sierra Nevada Batholith, California. Geol Soc Am Bull 84:1–20. doi:10.1130/0016-7606(1973)84<1:OOCLAO>2.0.CO;2

    Article  Google Scholar 

  • Oliver HW (1977) Gravity and magnetic investigations of the Sierra Nevada batholith, California. Geol Soc Am Bull 88:445–461. doi:10.1130/0016-7606(1977)88<445:GAMIOT>2.0.CO;2

    Article  Google Scholar 

  • Paterson SR, Farris DW (2008) Downward host rock transport and the formation of rim monoclines during the emplacement of Cordilleran batholiths. Trans R Soc Edinb Earth Sci 97:397–413

    Google Scholar 

  • Paterson SR, Miller RB (1998) Mid-crustal magmatic sheets in the Cascades Mountains, Washington: implications for magma ascent. J Struct Geol 20:1345–1363. doi:10.1016/S0191-8141(98)00072-8

    Article  Google Scholar 

  • Paterson SR, Vernon RH (1995) Bursting the bubble of ballooning plutons: a return to nested diapirs emplaced by multiple processes. Geol Soc Am Bull 107:1356–1380. doi:10.1130/0016-7606(1995)107<1356:BTBOBP>2.3.CO;2

    Article  Google Scholar 

  • Paterson SR, Vernon RH, Tobisch OT (1989) A review of criteria for identification of magmatic and tectonic foliations in granitoids. J Struct Geol 11:349–363. doi:10.1016/0191-8141(89)90074-6

    Article  Google Scholar 

  • Paterson SR, Fowler TK, Miller RB (1996) Pluton emplacement in arcs: a crustal-scale exchange process. Trans R Soc Edinb Earth Sci 87:115–123

    Google Scholar 

  • Paterson SR, Fowler TK, Schmidt KL, Yoshinobu AS, Yuan ES, Miller RB (1998) Interpreting magmatic fabric patterns in plutons. Lithos 44:53–82. doi:10.1016/S0024-4937(98)00022-X

    Article  Google Scholar 

  • Paterson SR, Onezime J, Teruya L, Žák J (2003) Quadruple-pronged enclaves: their significance for the interpretation of multiple magmatic fabrics in plutons. J Virtual Explor 10:15–30

    Google Scholar 

  • Paterson S, Okaya D, Matzel J, Memeti V, Mundil R (2007) Size and longevity of magma chambers in the Tuolumne batholith: a comparison of thermal modeling and cooling thermochronology. Eos Trans AGU 88:V44C-02

    Google Scholar 

  • Paterson SR, Žák J, Janoušek V (2008) Growth of complex sheeted zones during recycling of older magmatic units into younger: Sawmill Canyon area, Tuolumne batholith, Sierra Nevada, California. J Volcanol Geotherm Res 177:457–484. doi:10.1016/j.jvolgeores.2008.06.024

    Article  Google Scholar 

  • Pawley MJ, Collins WJ, Van Kranendonk MJ (2002) Origin of fine-scale sheeted granites by incremental injection of magma into active shear zones: examples from the Pilbara Craton, NW Australia. Lithos 61:127–139. doi:10.1016/S0024-4937(02)00076-2

    Article  Google Scholar 

  • Petford N, Kerr RC, Lister JR (1993) Dike transport of granitoid magmas. Geology 21:845–848. doi:10.1130/0091-7613(1993)021<0845:DTOGM>2.3.CO;2

    Article  Google Scholar 

  • Petford N, Lister JR, Kerr RC (1994) The ascent of felsic magmas in dykes. Lithos 32:161–168. doi:10.1016/0024-4937(94)90028-0

    Article  Google Scholar 

  • Petford N, Cruden AR, McCaffrey KJW, Vigneresse JL (2000) Granite magma formation, transport and emplacement in the Earth’s crust. Nature 408:669–673. doi:10.1038/35047000

    Article  Google Scholar 

  • Piccoli P, Candela P, Rivers M (2000) Interpreting magmatic processes from accessory phases: titanite—a small-scale recorder of large-scale processes. Trans R Soc Edinb Earth Sci 91:257–267

    Google Scholar 

  • Pons J, Barbey P, Nachit H, Burg JP (2006) Development of igneous layering during growth of pluton: the Tarcouate Laccolith (Morocco). Tectonophysics 413:271–286. doi:10.1016/j.tecto.2005.11.005

    Article  Google Scholar 

  • Price NJ, Cosgrove JW (1990) Analysis of geological structures. Cambridge University Press, Cambridge

    Google Scholar 

  • Ramsay JG (1980) The crack-seal mechanism of rock deformation. Nature 284:135–139. doi:10.1038/284135a0

    Article  Google Scholar 

  • Reid JB, Murray DP, Hermes OD, Steig EJ (1993) Fractional crystallization in granites of the Sierra Nevada: how important is it? Geology 21:587–590. doi:10.1130/0091-7613(1993)021<0587:FCIGOT>2.3.CO;2

    Article  Google Scholar 

  • Sawka WN (1988) REE and trace element variations in accessory minerals and hornblende from the strongly zoned McMurry Meadows Pluton, California. Trans R Soc Edinb Earth Sci 79:157–168

    Google Scholar 

  • Shannon JR, Walker BM, Carten RB, Geraghty RP (1982) Unidirectional solidification textures and their significance in determining relative ages of intrusions at Henderson Mine, Colorado. Geology 10:293–297. doi:10.1130/0091-7613(1982)10<293:USTATS>2.0.CO;2

    Article  Google Scholar 

  • Sisson TW, Grove TL, Coleman DS (1996) Hornblende gabbro sill complex at Onion Valley, California, and a mixing origin for the Sierra Nevada batholith. Contrib Mineral Petrol 126:81–108. doi:10.1007/s004100050237

    Article  Google Scholar 

  • Solgadi F, Sawyer EW (2008) Formation of igneous layering in granodiorite by gravity flow: a field, microstructure and geochemical study of the Tuolumne Intrusive Suite at Sawmill Canyon, California. J Petrol 49:2009–2042. doi:10.1093/petrology/egn056

    Article  Google Scholar 

  • Streckeisen A (1974) Classification and nomenclature of plutonic rocks. Geol Rundsch 63:773–786. doi:10.1007/BF01820841

    Article  Google Scholar 

  • Tiepolo M, Oberti R, Vannucci R (2002) Trace element incorporation in titanite: constraints from experimentally determined solid/liquid partition coefficients. Chem Geol 191:105–119. doi:10.1016/S0009-2541(02)00151-1

    Article  Google Scholar 

  • Tiepolo M, Oberti R, Zanetti A, Vannucci R, Foley SF (2007) Trace element partitioning between amphibole and silicate melt. In: Hawthorne FC, Oberti R, Della Ventura G, Mottana A (eds) Amphiboles. Crystal chemistry, occurrence and health issues. Reviews in Mineralogy and Geochemistry 67. Mineralogical Society of America and Geochemical Society, Chantilly, pp 417–452

    Google Scholar 

  • Vernon RH (1985) Possible role of superheated magma in the formation of orbicular granitoids. Geology 13:843–845. doi:10.1130/0091-7613(1985)13<843:PROSMI>2.0.CO;2

    Article  Google Scholar 

  • Vernon RH (2000) Review of microstructural evidence of magmatic and solid-state flow. Electron Geosci 5:1–23

    Google Scholar 

  • Vernon RH, Paterson SR (2008) How extensive are subsolidus grain-shape changes in cooling granites? Lithos 105:42–50. doi:10.1016/j.lithos.2008.02.004

    Article  Google Scholar 

  • Vosteen HD, Schellschmidt R (2003) Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock. Phys Chem Earth 28:499–509

    Google Scholar 

  • Walker BA, Miller CF, Claiborne L, Wooden JL, Miller JS (2007) Geology and geochronology of the Spirit Mountain batholith, southern Nevada: implications for timescales and physical processes of batholith construction. J Volcanol Geotherm Res 167:239–262

    Google Scholar 

  • Webber CE, Candela PA, Piccoli PM, Simon AC (2001) Generation of granitic dikes: can texture, mineralogy, and geochemistry be used as guides to determine the mechanisms of diking? Geol Soc Am Abstracts with Programs, Paper no. 57-0

  • Weinberg RF (1999) Mesoscale pervasive felsic magma migration: alternatives to dyking. Lithos 46:393–410. doi:10.1016/S0024-4937(98)00075-9

    Article  Google Scholar 

  • Weinberg RF, Sial AN, Pessoa RR (2001) Magma flow within the Tavares pluton, northeastern Brazil: compositional and thermal convection. Geol Soc Am Bull 113:508–520. doi:10.1130/0016-7606(2001)113<0508:MFWTTP>2.0.CO;2

    Article  Google Scholar 

  • Westraat JD, Kisters AFM, Poujol M, Stevens G (2005) Transcurrent shearing, granite sheeting and the incremental construction of the tabular 3.1 Ga Mpuluzi batholith, Barberton granite–greenstone terrane, South Africa. J Geol Soc London 162:373–388. doi:10.1144/0016-764904-026

    Article  Google Scholar 

  • Wiebe RA (1993) The Pleasant Bay layered gabbro-diorite, Coastal Maine: ponding and crystallization of basaltic injections into a silicic magma chamber. J Petrol 34:461–489

    Google Scholar 

  • Wiebe RA (1996) Mafic-silicic layered intrusions: the role of basaltic injections on magmatic processes and the evolution of silicic magma chambers. Trans R Soc Edinb Earth Sci 87:233–242

    Google Scholar 

  • Wiebe RA, Collins WJ (1998) Depositional features and stratigraphic sections in granitic plutons: implications for the emplacement and crystallization of granitic magma. J Struct Geol 20:1273–1289. doi:10.1016/S0191-8141(98)00059-5

    Article  Google Scholar 

  • Wiebe RA, Blair KD, Hawkins DP, Sabine CP (2002) Mafic injections, in situ hybridization, and crystal accumulation in the Pyramid Peak granite, California. Geol Soc Am Bull 114:909–920. doi:10.1130/0016-7606(2002)114<0909:MIISHA>2.0.CO;2

    Article  Google Scholar 

  • Yoshinobu AS, Okaya DA, Paterson SR (1998) Modelling the thermal evolution of fault-controlled magma emplacement models: implications for the solidification of granitoid plutons. J Struct Geol 20:1205–1218. doi:10.1016/S0191-8141(98)00064-9

    Article  Google Scholar 

  • Žák J, Paterson SR (2005) Characteristics of internal contacts in the Tuolumne Batholith, central Sierra Nevada, California (USA): implications for episodic emplacement and physical processes in a continental arc magma chamber. Geol Soc Am Bull 117:1242–1255. doi:10.1130/B25558.1

    Article  Google Scholar 

  • Žák J, Paterson SR (2006) Roof and walls of the Red Mountain Creek pluton, eastern Sierra Nevada, California (USA): implications for process zones during pluton emplacement. J Struct Geol 28:575–587. doi:10.1016/j.jsg.2005.12.017

    Article  Google Scholar 

  • Žák J, Vyhnálek B, Kabele P (2006) Is there a relationship between magmatic fabrics and brittle fractures in plutons? A view based on structural analysis, anisotropy of magnetic susceptibility and thermo-mechanical modelling of the Tanvald pluton (Bohemian Massif). Phys Earth Planet Inter 157:286–310. doi:10.1016/j.pepi.2006.05.001

    Article  Google Scholar 

  • Žák J, Paterson SR, Memeti V (2007) Four magmatic fabrics in the Tuolumne batholith, central Sierra Nevada, California (USA): implications for interpreting fabric patterns in plutons and evolution of magma chambers in the upper crust. Geol Soc Am Bull 119:184–201. doi:10.1130/B25773.1

    Article  Google Scholar 

  • Zen E (1986) Aluminium enrichment in silicate melts by fractional crystallization: some mineralogic and petrographic constraints. J Petrol 27:1095–1117

    Google Scholar 

Download references

Acknowledgments

We thank the two anonymous reviewers for their helpful comments, which assisted in improving the original manuscript. This study was completed during the post-doctoral research of Jiří Žák, supported by the post-doctoral grant of the Grant Agency of the Czech Republic No. 205/07/P226. We also acknowledge the financial support from the Czech Academy of Sciences Grant No. KJB3111403 (to Jiří Žák), and the Ministry of Education, Youth and Sports of the Czech Republic Research Plans No. MSM0021620855 and No. MSM6840770003 (to Petr Kabele). Scott Paterson acknowledges support from NSF Grants EAR-0537892 and EAR-0073943. The short visit by Vojtěch Janoušek to the Division of Earth Sciences, University of Glasgow, Scotland (and the patience of Colin Braithwaite, in particular) made possible the acquisition of the CL photographs; Zdeněk Táborský (Czech Geological Survey, Prague) helped with petrographic studies. Last but not least, the Yosemite National Park Rangers are gratefully acknowledged for their constant support and interest in our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Žák.

Additional information

Communicated by T.L. Grove.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Žák, J., Paterson, S.R., Janoušek, V. et al. The Mammoth Peak sheeted complex, Tuolumne batholith, Sierra Nevada, California: a record of initial growth or late thermal contraction in a magma chamber?. Contrib Mineral Petrol 158, 447–470 (2009). https://doi.org/10.1007/s00410-009-0391-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-009-0391-8

Keywords

Navigation