Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liquids

Abstract

To evaluate the role of garnet and amphibole fractionation at conditions relevant for the crystallization of magmas in the roots of island arcs, a series of experiments were performed on a synthetic andesite at conditions ranging from 0.8 to 1.2 GPa, 800–1,000°C and variable H2O contents. At water undersaturated conditions and fO2 established around QFM, garnet has a wide stability field. At 1.2 GPa garnet + amphibole are the high-temperature liquidus phases followed by plagioclase at lower temperature. Clinopyroxene reaches its maximal stability at H2O-contents ≤9 wt% at 950°C and is replaced by amphibole at lower temperature. The slopes of the plagioclase-in boundaries are moderately negative in \( {\text{T{\text{-}}X}}_{{{\text{H}}_{2} {\text{O}}}} \) space. At 0.8 GPa, garnet is stable at magmatic H2O contents exceeding 8 wt% and is replaced by spinel at decreasing dissolved H2O. The liquids formed by crystallization evolve through continuous silica increase from andesite to dacite and rhyolite for the 1.2 GPa series, but show substantial enrichment in FeO/MgO for the 0.8 GPa series related to the contrasting roles of garnet and amphibole in fractionating Fe–Mg in derivative liquids. Our experiments indicate that the stability of igneous garnet increases with increasing dissolved H2O in silicate liquids and is thus likely to affect trace element compositions of H2O-rich derivative arc volcanic rocks by fractionation. Garnet-controlled trace element ratios cannot be used as a proxy for ‘slab melting’, or dehydration melting in the deep arc. Garnet fractionation, either in the deep crust via formation of garnet gabbros, or in the upper mantle via formation of garnet pyroxenites remains an important alternative, despite the rare occurrence of magmatic garnet in volcanic rocks.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Allen JC, Boettcher AL (1978) Amphiboles in andesite and basalt: II. Stability as a function of P–T-fH2O-fO2. Am Mineral 63:1074–1087

    Google Scholar 

  2. Allen JC, Boettcher AL (1983) The stability of amphibole in andesite and basalt at high pressures. Am Mineral 68:307–314

    Google Scholar 

  3. Allen JC, Boettcher AL, Marland G (1975) Amphiboles in andesite and basalt: I. Stability as a function of P–T-fO2. Am Min 60:1069–1085

    Google Scholar 

  4. Alonso-Perez R (2006) The role of garnet in the evolution of hydrous, calc-alkaline magmas: an experimental study at 0.8–1.5 GPa. PhD thesis, ETH Zurich, p 174

  5. Atherton MP, Petford N (1993) Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 362:144–146. doi:10.1038/362144a0

    Article  Google Scholar 

  6. Baker DR, Eggler DH (1987) Compositions of anhydrous and hydrous melts coexisting with plagioclase, augite, and olivine or low-Ca pyroxene from 1 atm to 8 kbar: application to the Aleutian volcanic center of Atka. Am Min 72:12–28

    Google Scholar 

  7. Bartels KS, Kinzler RJ, Grove TL (1991) High pressure phase relations of primitive high-alumina basalts from Medicine Lake volcano, northern California. Contrib Mineral Petrol 108:253–270. doi:10.1007/BF00285935

    Article  Google Scholar 

  8. Blundy JD, Sparks RSJ (1992) Petrogenesis of mafic inclusions in granitoid magmas of the Adamello massif, Italy. J Petrol 33:1039–1104

    Google Scholar 

  9. Blundy JD, Wood BJ (2003) Partitioning of trace elements between crystals and melts. Earth Planet Sci Lett 210:383–397

    Article  Google Scholar 

  10. Bowen NL (1928) The evolution of igneous rocks. Princeton University Press, NJ

  11. Burg JP, Bodinier JL, Chaudhry S, Hussain S, Dawood H (1998) Infra-arc mantle-crust transition and intra-arc mantle diapirs in the Kohistan complex (Pakistani Himalaya): petro-structural evidence. Terra Nova 10:74–80. doi:10.1046/j.1365-3121.1998.00170.x

    Article  Google Scholar 

  12. Cawthorn RG, Brown PA (1976) A model for the formation and crystallization of corundum-normative calcalkaline magmas through amphibole fractionation. J Geol 84:467–476

    Article  Google Scholar 

  13. Cawthorn RG, O’Hara MJ (1976) Amphibole fractionation in calc-alkaline magma genesis. Am J Sci 276:309–329

    Google Scholar 

  14. Chappell BW, White AJR, Wyborn D (1987) The importance of residual source material (restite) in granite petrogenesis. J Petrol 28(6):1111–1138

    Google Scholar 

  15. Coleman RG, Lee DE, Beatty LB, Brannock WW (1965) Eclogites and eclogites–their differences and similarities. Geol Soc Am Bull 76:483–508. doi:10.1130/0016-7606(1965)76[483:EAETDA]2.0.CO;2

    Article  Google Scholar 

  16. Conrad WK, Nicholls IA, Wall VJ (1988) Water-saturated and -undersaturated melting of metaluminous and peraluminous crustal compositions at 10 kb: evidence for the origin of silicic magmas in the Taupo Volcanic Zone, New Zealand, and other occurrences. J Petrol 29:765–803

    Google Scholar 

  17. Davidson J, Turner S, Handley H, Macpherson C, Dosseto A (2007) Amphibole ‘sponge’ in the arc crust. Geology 35:787–790. doi:10.1130/G23637A.1

    Article  Google Scholar 

  18. Day RA, Green TH, Smith IEM (1992) The origin and significance of garnet phenocrysts and garnet-bearing xenoliths in miocene calc-alkaline volcanics from Northland, New Zealand. J Petrol 33:125–161

    Google Scholar 

  19. DeBari SM, Coleman RG (1989) Examination of the deep levels of an island arc: Evidence from the Tonsina ultramafic-mafic assemblage, Tonsina, Alaska. J Geophys Res 94:4373–4391. doi:10.1029/JB094iB04p04373

    Article  Google Scholar 

  20. Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665. doi:10.1038/347662a0

    Article  Google Scholar 

  21. Di Muro A, Villemant B, Montagnac G, Scaillet B, Reynard B (2006) Quantification of water content and speciation in natural silicic glasses (phonolite, dacite, rhyolite) by confocal micro-Raman spectrometry. Geochim Cosmochim Acta 70:2868–2884. doi:10.1016/j.gca.2006.02.016

    Article  Google Scholar 

  22. Dixon JE, Pan V (1995) Determination of the molar absorptivity of dissolved carbonate in basanitic glass. Am Min 80:1339–1342

    Google Scholar 

  23. Dixon JE, Stolper EM, Holloway JR (1995) An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids 1. Calibration and solubility models. J Petrol 36:1607–1631

    Google Scholar 

  24. Draper DS, Johnston AD (1992) Anhydrous PT phase relations of an aleutian high-MgO basalt: an investigation of the role of olivine-liquid reaction in the generation of high-alumina basalts. Contrib Mineral Petrol 112:501–519. doi:10.1007/BF00310781

    Article  Google Scholar 

  25. Ducea MN, Saleeby JB (1996) Buoyancy sources for a large, unrooted mountain range, the Sierra Nevada, California: evidence form xenolith thermobarometry. J Geophys Res 101(B4):8229–8244. doi:10.1029/95JB03452

    Article  Google Scholar 

  26. Ducea MN, Saleeby JB (1998) The age and origin of a thick mafic-ultramafic keel from beneath the Sierra Nevada batholith. Contrib Mineral Petrol 133:169–185. doi:10.1007/s004100050445

    Article  Google Scholar 

  27. Evans BW, Vance JA (1987) Epidote phenocrysts in dacitic dikes, Boulder county, Colorado. Contrib Mineral Petrol 96:178–185. doi:10.1007/BF00375231

    Article  Google Scholar 

  28. Fitton JG (1972) The genetic significance of almandine-pyrope phenocrysts in the calc-alkaline Borrowdale volcanic group, Northern England. Contrib Mineral Petrol 36:231–248. doi:10.1007/BF00371434

    Article  Google Scholar 

  29. Gaetani GA, Grove TL (1998) The influence of water on melting of mantle peridotite. Contrib Mineral Petrol 131:323–346. doi:10.1007/s004100050396

    Article  Google Scholar 

  30. Garrido CJ, Bodinier J-L, Burg J-P, Zeilinger G, Hussain SS, Dawood H, Chaudry N, Gervilla F (2006) Petrogenesis of mafic garnet granulite in the lower crust of the Kohistan Paleo-arc complex (Northern Pakistan): Implications for intra-crustal differentiation of island arcs and generation of continental crust. J Petrol 47:1872–1914. doi:10.1093/petrology/egl030

    Article  Google Scholar 

  31. Gill JB (1981) Orogenic Andesites and plate tectonics. Springer, Berlin, p 390

    Google Scholar 

  32. Green TH (1972) Crystallization of calc-alkaline andesite under controlled high pressure hydrous conditions. Contrib Mineral Petrol 34:150–166. doi:10.1007/BF00373770

    Article  Google Scholar 

  33. Green TH (1992) Experimental phase equilibrium studies of garnet-bearing I-type volcanics and high-level intrusives from Northland, New Zealand. Trans R Soc Edinb Earth Sci 83:429–438

    Google Scholar 

  34. Green TH, Ringwood AE (1968a) Genesis of the calc-alkaline igneous rock suite. Contrib Mineral Petrol 18:105–162. doi:10.1007/BF00371806

    Article  Google Scholar 

  35. Green TH, Ringwood AE (1968b) Origin of garnet phenocrysts in calc-alkaline rocks. Contrib Mineral Petrol 18:163–174. doi:10.1007/BF00371807

    Article  Google Scholar 

  36. Greene AR, DeBari SM, Kelemen PB, Blusztain J, Clift PD (2006) A detailed geochemical study of island arc crust: the Talkeetna arc section, south-central Alaska. J Petrol 47:1051–1093. doi:10.1093/petrology/egl002

    Article  Google Scholar 

  37. Grove TL, Kinzler RJ, Bryan WB (1992) Fractionation of mid-ocean ridge basalt (MORB). In: Phipps Morgan J, Blackman DK, Sinton JM (eds) Mantle flow and melt generation at mid-ocean ridges, vol 71. American Geophysical Union, Washington, DC, pp 281–310

    Google Scholar 

  38. Hall LJ, Brodie J, Wood BJ, Carroll MR (2004) Iron and water losses from hydrous basalts contained in Au80Pd20 capsules at high pressure and temperature. Min Mag (Lond) 68:75–81. doi:10.1180/0026461046810172

    Article  Google Scholar 

  39. Harangi SZ, Downes H, Kosa L, Szabo C, Thirlwall MF, Mason PRD, Mattey DP (2001) Almandine Garnet in calc-alkaline volcanic rocks of the Northern Pannonian basin (Eastern Central Europe): Geochemistry, petrogenesis and geodynamic implications. J Petrol 42:1813–1843. doi:10.1093/petrology/42.10.1813

    Article  Google Scholar 

  40. Helz RT (1982) Phase relations and compositions of amphiboles produced in studies of the melting behavior of rocks. In: Ribbe P (ed) Amphiboles; petrology and experimental phase relations. Mineralogical Society of America, Washington, DC, pp 279–353

    Google Scholar 

  41. Huang W-L, Wyllie PJ (1986) Phase relationships of gabbro-tonalite-granite-water at 15 kbar with applications to differentiation and anatexis. Am Min 71:301–316

    Google Scholar 

  42. Jan MQ, Howie RA (1981) The mineralogy and geochemistry of the metamorphosed basic and ultrabasic rocks of the Jijal complex, Kohistan, NW Pakistan. J Petrol 22:85–126

    Google Scholar 

  43. Kägi R (2000) The liquid line of descent of hydrous, primary calc-alkaline magmas under elevated pressure. An experimental approach. PhD thesis, ETH Zürich, p 100

  44. Kägi R, Müntener O, Ulmer P, Ottolini L (2005) Piston cylinder experiments on H2O undersaturated Fe-bearing systems: an experimental setup approaching fO2 conditions of natural calc-alkaline magmas. Am Min 90:708–717. doi:10.2138/am.2005.1663

    Article  Google Scholar 

  45. Kay S, Mahlburg KS, Kay RW (1985) Aleutian tholeiitic and calc-alkaline magma series I: the mafic phenocrysts. Contrib Mineral Petrol 90:276–290. doi:10.1007/BF00378268

    Google Scholar 

  46. Kelemen PB, Hanghøj K, Greene AR (2003) One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In: Rudnick RL (ed) The crust. Elsevier, New York, pp 593–659

    Google Scholar 

  47. Kinzler RJ, Grove TL (1992) Primary magmas of mid-ocean ridge basalts 1. Experiments and methods. J Geophys Res 97:6885–6906. doi:10.1029/91JB02840

    Article  Google Scholar 

  48. Kress VC, Carmichael ISE (1991) The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib Mineral Petrol 108:82–92. doi:10.1007/BF00307328

    Article  Google Scholar 

  49. Kushiro I (1987) A petrological model of the mantle wedge and lower crust in the Japanese island arcs. In: Mysen B (ed): Magmatic processes, physicochemical principles. Geochem Soc Spec Publ 1:165–181

  50. Le Bas MJ, Lemaitre RW, Streckeisen A, Zanettin B (1986) A chemical classification diagram of volcanic rocks based on the total alkali silica diagram. J Petrol 27(3):745–750

    Google Scholar 

  51. Leake BE (1978) Nomenclature of amphiboles. Am Min 63:1023–1052

    Google Scholar 

  52. Mercier M, Di Muro A, Giordano D, Métrich N, Lesne P, Pichavant M, Scaillet B, Clocchiatti R, Montagnac G (2008) Influence of glass polymerization and oxidation on Micro-Raman water analysis in alumino-silicate glasses. Geochim Cosmochim Acta (in press)

  53. Miyashiro A (1974) Volcanic rock series in island arcs and active continental margins. Am J Sci 274:321–355

    Google Scholar 

  54. Müntener O, Ulmer P (2006) Experimentally derived high-pressure cumulates from hydrous arc magmas and consequences for the seismic velocity structure of island arc crust. Geophys Res Lett 31:L21308. doi:10.1029/2006GL027629

    Article  Google Scholar 

  55. Müntener O, Kelemen PB, Grove TL (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Mineral Petrol 141:643–658

    Google Scholar 

  56. Mysen BO (1988) Structure and properties of silicate melts. Elsevier, Amsterdam

    Google Scholar 

  57. Osborn EF (1959) Role of oxygen pressure in the crystallization and differentiation of basaltic magma. Am J Sci 257:609–647

    Google Scholar 

  58. Newman S, Stolper E, Stern R (2000) H2O and CO2 in magmas from the Mariana arc and back arc systems. Geochem Geophys Geosystems 1. doi:10.1029/1999GC000027

  59. Otten MT (1984) The origin of brown hornblende in the Artfjället gabbro and dolerites. Contrib Mineral Petrol 86(2):189–199. doi:10.1007/BF00381846

    Article  Google Scholar 

  60. Pilet S, Baker M, Stolper EM (2008) Metasomatized lithosphere and the origin of alkaline lavas. Science 320:916–919. doi:10.1126/science.1156563

    Article  Google Scholar 

  61. Ratajeski K, Sisson TW (1999) Loss of iron to gold capsules in rock-melting experiments. Am Min 84:1521–1527

    Google Scholar 

  62. Ringuette L, Martignole J, Windley BF (1999) Magmatic crystallization, isobaric cooling, and decompression of the garnet-bearing assemblages of the Jijal sequence (Kohistan terrane, western Himalayas). Geology 27:139–142. doi:10.1130/0091-7613(1999)027<0139:MCICAD>2.3.CO;2

    Article  Google Scholar 

  63. Rudnick RL (1995) Making continental crust. Nature 378:571–577. doi:10.1038/378571a0

    Article  Google Scholar 

  64. Schroter FC, Stevenson JA, Daczko NR, Clarke GL, Pearson NJ, Klepeis KA (2004) Trace element partitioning during high-P partial melting and melt-rock interaction; an example from northern Fiordland, New Zealand. J Metamorph Geol 22(5):443–457. doi:10.1111/j.1525-1314.2004.00525.x

    Article  Google Scholar 

  65. Sisson TW, Grove TL (1993a) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113:143–166. doi:10.1007/BF00283225

    Article  Google Scholar 

  66. Sisson TW, Grove TL (1993b) Temperatures and H2O contents of low MgO high-alumina basalts. Contrib Mineral Petrol 113:167–184. doi:10.1007/BF00283226

    Article  Google Scholar 

  67. Sisson TW, Ratajeski K, Hankins WB, Glazner AF (2005) Voluminous granitic magmas from common basaltic sources. Contrib Mineral Petrol 148:635–661. doi:10.1007/s00410-004-0632-9

    Article  Google Scholar 

  68. Stern CR, Huang W-L, Wyllie PJ (1975) Basalt-andesite-rhyolite-H2O crystallization intervals with excess H2O and H2O-undersaturated liquidus surfaces to 35 kilobars, with implications for magma genesis. Earth Planet Sci Lett 28:189–196. doi:10.1016/0012-821X(75)90226-5

    Article  Google Scholar 

  69. Taylor SR (1967) The origin and growth of continents. Tectonophysics 4:17–34. doi:10.1016/0040-1951(67)90056-X

    Article  Google Scholar 

  70. Tiepolo M, Vannucci R, Oberti R, Foley S, Bottazzi P, Zanetti A (2000) Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite; crystal-chemical constraints and implications for natural systems. Earth Planet Sci Lett 176:185–201. doi:10.1016/S0012-821X(00)00004-2

    Article  Google Scholar 

  71. Ulmer P (1986) Basische und ultrabasische Gesteine des Adamello (Provinzen Brescia und Trento, Norditalien). PhD thesis Nr. 8105. ETH Zürich

  72. Ulmer P (1989a) High pressure phase equilibria of a calc-alkaline picro-basalt: Implications for the genesis of calc-alkaline magmas. Carnegie Inst Wash Yb 88:28–35

    Google Scholar 

  73. Ulmer P (1989b) Partitioning of High Field Strength Elements among olivine, pyroxenes, garnet and calc-alkaline picrobasalts: experimental results and an application. Carnegie Inst Wash Yb 88:42–47

    Google Scholar 

  74. Ulmer P (2007) Differentiation of mantle-derived calc-alkaline magmas at mid to lower crustal levels: experimental and petrologic constraints. Minerva 76:309–325

    Google Scholar 

  75. Ulmer P, Callegari E, Sonderegger UC (1983) Genesis of the mafic and ultramafic rocks and their genetical relations to the tonalitic-trondhjemitic granitoids of the southern part of the Ademello Batholith, (Northern Italy). Mem Soc Geol Ital 26:171–222

    Google Scholar 

  76. Villiger S, Ulmer P, Müntener O, Thompson AB (2004) The liquid line of descent of anhydrous, mantle-derived, tholeiitic liquids by fractional and equilibrium crystallization—an experimental study at 1.0 GPa. J Petrol 45:2369–2388. doi:10.1093/petrology/egh042

    Article  Google Scholar 

  77. Villiger S, Ulmer P, Müntener O (2007) Equilibrium and fractional crystallization experiments at 0.7 GPa: the effect of pressure on phase relations and liquid compositions of tholeiitic magmas. J Petrol 48:159–184. doi:10.1093/petrology/egl058

    Article  Google Scholar 

  78. Weber MBI, Tarney J, Kempton PD, Kent RW (2002) Crustal make-up of the Northern Andes; evidence based on deep crustal xenolith suites, Mercaderes, SW Colombia. In: Wörner G, Jaillard E (eds) Andean geodynamics. Elsevier, Amsterdam

    Google Scholar 

  79. Wilke M, Behrens H (1999) The dependence of the partitioning of iron and europium between plagioclase and hydrous tonalitic melt on oxygen fugacity. Contrib Mineral Petrol 137:102–114. doi:10.1007/s004100050585

    Article  Google Scholar 

  80. Yoder HS (1968) Albite-anorthite-quartz-water at 5 kbar. Carnegie Inst Wash Yb 66:477–478

    Google Scholar 

  81. Yoshino T, Okudaira T (2004) Crustal growth by magmatic accretion constrained by metamorphic p-T paths and thermal models of the Kohistan arc, NW Himalayas. J Petrol 45:2287–2302. doi:10.1093/petrology/egh056

    Article  Google Scholar 

  82. Zajacz Z, Halter W, Malfait W, Bachmann O, Bodnar RJ, Hirschmann MM, Mandeville CW, Morizet Y, Müntener O, Ulmer P, Webster J (2005) A composition-independent quantitative determination of the water content in silicate glasses and silicate melt inclusions by confocal Raman spectroscopy. Contrib Mineral Petrol 150:631–642. doi:10.1007/s00410-005-0040-9

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to S. Pilet for measuring CO2 and H2O in the starting material by FT-IR at Caltech. We thank Bruno Scaillet and Alan Thompson for comments and M.J. Krawczynski who provided a helpful review that improved the paper. Insightful and constructive comments by T.W. Sisson forced us to think harder about CO2 and fO2 and substantially improved the overall content of the paper. This research was supported by the Swiss NSF (Grants nr. 2000-61894.00/1).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Othmar Müntener.

Additional information

Communicated by T. L. Grove.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alonso-Perez, R., Müntener, O. & Ulmer, P. Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liquids. Contrib Mineral Petrol 157, 541 (2009). https://doi.org/10.1007/s00410-008-0351-8

Download citation

Keywords

  • Experimental petrology
  • Hydrous andesite liquids
  • High-pressure crystallization
  • Amphibole
  • Garnet fractionation