Skip to main content
Log in

The miarolitic pegmatites from the Königshain: a contribution to understanding the genesis of pegmatites

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

In this paper, we show that the crystallization of miarolitic pegmatites at Königshain started at about 700°C, in melts containing up to 30 mass% water. Such high water concentration at low pressures (1–3 kbar) is only possible if the melts are peralkaline. Such peralkaline melts are highly corrosive, and reacted with the wall rock—here the granite host—forming the graphic granite zone, in part via a magmatic–metasomatic reaction. With cooling, the water concentration in some melt fractions increased up to 50 mass% H2O. The melt-dominated system ends below 600°C and passes into a fluid-dominated system, the beginning of which is characterized by strong pressure fluctuations, caused by the change of OH and CO3 2− in the melt, to molecular water and CO2. We note two generations of smoky quartz, one crystallized above the β–α-transition of quartz (≈573°C), and one below, both of which contain melt inclusions. This indicates that some melt fraction remains during at least the higher-temperature portion of the growth of minerals into the miarolitic cavity, contradicting the view that minerals growing into a pegmatite chamber only do so from aqueous fluids. We show that the Königshain miarolitic pegmatites are part of the broad spectrum of pegmatite types, and the processes active at Königshain are representative of processes found in most granitic pegmatites, and are thus instructive in the understanding of pegmatite formation in general, and constraining the composition and characteristics of pegmatite-forming melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Åmli R, Griffin WL (1975) Microprobe analysis of REE minerals using empirical correction factors. Am Mineral 60:599–606

    Google Scholar 

  • Armstrong JT (1991) Quantitative elemental analysis of individual microparticles with electron beam instruments. In: Heinrich KFJ, Newbury DE (eds) Electron probe quantification. Plenum Press, New York, pp 261–315

  • Audétat A, Keppler H (2004) Viscosity of fluids in subduction zones. Science 303:513–516

    Article  Google Scholar 

  • Bakker RJ (2003) Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chem Geol 194:3–23

    Article  Google Scholar 

  • Beus AA (1966) Geochemistry of beryllium and genetic types of beryllium deposits. Freeman and Company, San Francisco

    Google Scholar 

  • Borisenko AS (1974) Determination of sodium carbonates and bicarbonates in solutions of gas–liquid inclusions in minerals. Akad Nauk SSSR Dokl 214:917–920 (in Russian)

    Google Scholar 

  • Borisenko AS (1977) Cryometric technique applied to studies of the saline composition of solution in gaseous fluid inclusions in minerals. Geologija i Geofizika, AN SSSR, SO, 8:16–27 (in Russian)

  • Brotzen O (1959) Outline of mineralization in zoned granitic pegmatites. Geol För Förh 81:1–98

    Google Scholar 

  • Burnham CW (1979) The importance of volatile constituents. In: Yoder HS Jr (ed) The evolution of the igneous rocks: fiftieth anniversary perspectives. Princeton University Press, Princeton, pp 439–482

  • Candela PA, Blevin PL (1995) Do some miarolitic granites preserve evidence of magmatic volatile phase permeability? Econ Geol 90:2310–2316

    Article  Google Scholar 

  • Černý P, Ercit TS (2005) The classification of granitic pegmatites revisited. Can Mineral 43:2005–2026

    Google Scholar 

  • Downs RT (2006) The RUFF™ project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. Program and abstracts of the 19th general meeting of the international mineralogical association in Kobe, Japan, O03–13

  • Ebert H (1943) Das granitische Grundgebirge der östlichen Lausitz. Hirzel, Leipzig

    Google Scholar 

  • Eidam J, Götze J (1991) The granitic massif of Königshain-Arnsdorf (Lusatian Anticlinal Zone)—an example of a reversely zoned pluton. Chem Erde 51:55–71

    Google Scholar 

  • Förster HJ, Tischendorf G, Rhede D, Naumann R, Gottesmann B, Lange W (2005) Cs-rich lithium micas and Mn-rich lithian siderophyllite in miarolitic NYF pegmatites of the Königshain granite, Lausitz, Germany. N Jb Miner Abh 182:81–93

    Article  Google Scholar 

  • Hammer J, Eidam J, Röber B, Ehling BC (1999) Prävariscischer und variscischer granitoider Magmatismus am NE-Rand des Böhmischen Massivs–Geochemie und Petrogenese. Z Geol Wiss 27:401–415

    Google Scholar 

  • Hecht L, Thuro K, Plinninger R, Cuney M (1999) Mineralogical and geochemical characteristics of hydrothermal alteration and episyenitization in the Königshain granites, northern Bohemian Massif, Germany. Int J Earth Sci 88:236–252

    Article  Google Scholar 

  • Herzberg CT (1987) Magma density at high pressure: part 1. The effect of composition on the elastic properties of silicate liquids. In: Mysen B (ed) Magmatic processes: physicochemical principles, special publication, Vol. 1. The Geochemical Society, pp 25–46

  • Janeczek J (2007) Intragranitic pegmatites of the Strzegom-Sobotka massif—an overview. Granitoids in Poland, AM Monograph No. 1:193–201

  • Kozlowski A (2002) Metasomatic origin of the granitoid pegmatites. Mineralogical Society of Poland, Special Papers 20:112–116

    Google Scholar 

  • Lange W, Tischendorf G, Krause U (2004) Minerale der Oberlausitz. Oettel, Görlitz-Zittau

    Google Scholar 

  • London D (1992) The application of experimental petrology to the genesis and crystallization of granitic pegmatites. Can Mineral 30:499–540

    Google Scholar 

  • London D (2004) Geochemistry of alkali and alkaline earth elements in ore-forming granites, pegmatites, and rhyolites. In: Linnen R, Sampson (eds) Rare-element geochemistry of ore deposits: Mineralogical Association of Canada Short Course Notes 17:17–43

  • London D (2008) Pegmatites. Can Mineral, Special Publication 10

  • Lu FQ, Anderson AT, Davis AM (1992) Melt inclusions and crystal–liquid separation in rhyolitic magma of the Bishop Tuff. Contrib Mineral Petrol 110:113–120

    Google Scholar 

  • Makarov SZ (1933) Isotherme Löslichkeit und Eis-Feld des ternären Systems Na2CO3–NaCl–H2O. Z Allg Chemie 3:234–248 (in Russian)

    Google Scholar 

  • Möbus G, Lindert W (1967) Das Granitmassiv von Königshain bei Görlitz (Oberlausitz). Abh Dt Akad Wiss, Kl Bergbau, Hüttenwesen und Montangeologie 1:81–160

  • Mustart DA (1972) Phase relations in the peralkaline portion of the system Na2O–Al2O3–SiO2–H2O. Dissertation, Stanford University, USA

  • Nývlt J (1977) Solid–liquid phase equilibria. Elsevier, Amsterdam

    Google Scholar 

  • Oliver BG, Davis AR (1973) Vibrational spectroscopic studies of aqueous alkali metal bicarbonate and carbonate solutions. Can J Chem 51:698–702

    Article  Google Scholar 

  • Pavlishin V, Dovgyi SA (2007) Mineralogy of the Volynian chamber pegmatites, Ukraine. Mineralogical Almanac, EKOST Association, Moscow, Ocean Pictures, Littleton

  • Rhede D, Wendt I, Förster HJ (1996) A three-dimensional method for calculating independent chemical U/Pb- and Th/Pb-ages of accessory minerals. Chem Geol 130:247–253

    Article  Google Scholar 

  • Roeder PL (1985) Electron-microprobe analysis of minerals for rare-earth elements: use of calculated peak overlap corrections. Can Mineral 23:263–271

    Google Scholar 

  • Sirbescu ML, Nabelek PI (2003a) Crustal melts below 400°C. Geology 31:685–688

    Article  Google Scholar 

  • Sirbescu ML, Nabelek P (2003b) Dawsonite: an inclusion mineral in quartz from the Tin Mountain pegmatite, Black Hills, South Dakota. Am Mineral 88:1055–1060

    Google Scholar 

  • Thomas R (2000) Determination of water contents of granite melt inclusions by confocal laser Raman microprobe spectroscopy. Am Mineral 85:868–872

    Google Scholar 

  • Thomas R, Davidson P (2006) Progress in the determination of water in glasses and melt inclusions with Raman spectroscopy: a short review. Z Geol Wiss Berlin 34:159–163

    Google Scholar 

  • Thomas R, Klemm W (1997) Microthermometric study of silicate melt inclusions in Variscan granites from SE Germany: volatile content and entrapment conditions. J Petrol 38:1753–1765

    Article  Google Scholar 

  • Thomas R, Webster JD, Heinrich W (2000) Melt inclusions in pegmatite quartz: complete miscibility between silicate melts and hydrous fluids at low pressure. Contrib Mineral Petrol 139:394–401

    Article  Google Scholar 

  • Thomas JB, Bodnar RJ, Shimizu N, Chesner C (2002) The boundary layer problem and the reliability of melt inclusions as petrogenetic monitors: evidence from melt inclusions in zircon, allanite, plagioclase and quartz, In: De Vivo B, Bodnar RJ (eds) Melt inclusions: methods, applications and problems. De Frede Editore, Napoli, pp 205–209

  • Thomas R, Förster HJ, Heinrich W (2003) The behaviour of boron in a peraluminous granite–pegmatite system and associated hydrothermal solutions: a melt and fluid-inclusion study. Contrib Mineral Petrol 144:457–472

    Google Scholar 

  • Thomas R, Förster HJ, Rickers K, Webster JD (2005) Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin–granite magmas: a melt/fluid-inclusion study. Contrib Mineral Petrol 148:582–601

    Article  Google Scholar 

  • Thomas R, Webster JD, Davidson P (2006a) Understanding pegmatite formation: the melt and fluid inclusion approach. Melt inclusion in Plutonic rocks, MAC Short Course 36, Chap. 9, pp 189–210

  • Thomas R, Webster JD, Rhede D, Seifert W, Rickers K, Förster HJ, Heinrich W, Davidson P (2006b) The transition from peraluminous to peralkaline granitic melts: evidence from melt inclusions and accessory minerals. Lithos 91:137–149

    Article  Google Scholar 

  • Thomas R, Davidson P, Hahn A (2008) Ramanite-(Cs) and ramanite-(Rb): new cesium and rubidium pentaborate tetrahydrate minerals identified with Raman spectroscopy. Am Mineral 93:1034–1042

    Article  Google Scholar 

  • Veksler I, Thomas R (2002) An experimental study of B-, P- and F-rich synthetic granite pegmatite at 0.1 and 0.2 GPa. Contrib Mineral Petrol 143:673–683

    Google Scholar 

  • Voznyak DK, Matyash IV, Brick AB, Larikov AL, Mazykin VV (1984) On formation of the honeycomb quartz: ESR study. Geochimija 4:534–540 (in Russian)

    Google Scholar 

  • Webster JD, Thomas R (2006) Silicate melt inclusions in felsic plutons: a synthesis and review. MAC Short Course Vol. 36, Chap. 8, pp 165–188

  • Witzke T, Giesler T (2001) Neufunde aus Sachsen (VII): Bazzit, Bertrandit, euxenite-(Y), Powellit und andere aus dem Königshainer Granit in der Lausitz. Lapis 26:43–48

    Google Scholar 

Download references

Acknowledgments

The authors wish to express their appreciation to Mrs. H. Steiger for the performing of numerous high-pressure re-homogenization experiments and G. Berger for the preparation of numerous thick sections, both from the GFZ Potsdam. We thank D. Voznyak (Kiev, Ukraine) for the provision of important papers to problems of the crystallization in chamber pegmatites. We would like to thank Mr. W. Lange (Zittau) for fruitful discussion in the granite quarry “Melaune” in the Königshain Mountain and Mr. Maiwald from the ProStein GmbH & Company KG for the permission to visit the quarry. The Editor and two anonymous reviewers are thanked for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Thomas.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material (RTF 47 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, R., Davidson, P., Rhede, D. et al. The miarolitic pegmatites from the Königshain: a contribution to understanding the genesis of pegmatites. Contrib Mineral Petrol 157, 505–523 (2009). https://doi.org/10.1007/s00410-008-0349-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-008-0349-2

Keywords

Navigation