An experimental study of focused magma transport and basalt–peridotite interactions beneath mid-ocean ridges: implications for the generation of primitive MORB compositions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We performed experiments in a piston-cylinder apparatus to determine the effects of focused magma transport into highly permeable channels beneath mid-ocean ridges on: (1) the chemical composition of the ascending basalt; and (2) the proportions and compositions of solid phases in the surrounding mantle. In our experiments, magma focusing was supposed to occur instantaneously at a pressure of 1.25 GPa. We first determined the equilibrium melt composition of a fertile mantle (FM) at 1.25 GPa-1,310°C; this composition was then synthesised as a gel and added in various proportions to peridotite FM to simulate focusing factors Ω equal to 3 and 6 (Ω = 3 means that the total mass of liquid in the system increased by a factor of 3 due to focusing). Peridotite FM and the two basalt-enriched compositions were equilibrated at 1 GPa-1,290°C; 0.75 GPa-1,270°C; 0.5 GPa-1,250°C, to monitor the evolution of phase proportions and compositions during adiabatic decompression melting. Our main results may be summarised as follows: (1) magma focusing induces major changes of the coefficients of the decompression melting reaction, in particular, a major increase of the rate of opx consumption, which lead to complete exhaustion of orthopyroxene (and clinopyroxene) and the formation of a dunitic residue. A focusing factor of ≈4—that is, a magma/rock ratios equal to ≈0.26—is sufficient to produce a dunite at 0.5 GPa. (2) Liquids in equilibrium with olivine (±spinel) at low pressure (0.5 GPa) have lower SiO2 concentrations, and higher concentrations in MgO, FeO, and incompatible elements (Na2O, K2O, TiO2) than liquids produced by decompression melting of the fertile mantle, and plot in the primitive MORB field in the olivine–silica–diopside–plagioclase tetrahedron. Our study confirms that there is a genetic relationship between focused magma transport, dunite bodies in the upper mantle, and the generation of primitive MORBs.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Albarède F, Provost A (1977) Petrological and geochemical mass-balance equations: an algorithm for least-square fitting and general error analysis. Comput Geosci 3:309–326. doi:10.1016/0098-3004(77)90007-3

    Article  Google Scholar 

  2. Ancey M, Bastenaire F, Tixier R (1978) Application des méthodes statistiques en microanalyse. In: Maurice F, Meny L, Tixier R (eds) Microanalyse, microscopie électronique à balayage. Les éditions du Physicien, Orsay, pp 323–347

    Google Scholar 

  3. Asimow PD, Stolper EM (1999) Steady-state mantle-melt interactions in one dimension: equilibrium, transport and melt focusing. J Petrol 40(3):475–494. doi:10.1093/petrology/40.3.475

    Article  Google Scholar 

  4. Asimow PD, Hirschmann MM, Stolper EM (2001) Calculations of peridotite partial melting from thermodynamic models of minerals and melts, IV. Adiabatic decompression and the composition and mean properties of Mid-ocean Ridge Basalts. J Petrol 42(5):963–998. doi:10.1093/petrology/42.5.963

    Article  Google Scholar 

  5. Baker MB, Stolper EM (1994) Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim Cosmochim Acta 58:2811–2827. doi:10.1016/0016-7037(94)90116-3

    Article  Google Scholar 

  6. Baker MB, Beckett JR (1999) The origin of abyssal peridotite: a reinterpretation of constraints based on primary bulk composition. Earth Planet Sci Lett 171:49–61. doi:10.1016/S0012-821X(99)00130-2

    Article  Google Scholar 

  7. Bedini RM, Bodinier JL, Vernieres J (2002) Numerical simulation of Mg–Fe partitioning during melting and melt-rock interactions in the shallow upper mantle. Orogenic Lherzolite Conference, Abstract Volume, Japan 2002

  8. Braun MG (2004) Petrologic and microstructural constraints on focused melt transport in dunites and the rheology of the shallow mantle. PhD Thesis, Massachusetts Institute of Technology

  9. Braun MG, Kelemen PB (2002) Dunite distribution in the Oman Ophiolite: implications for melt flux through porous dunite conduits. Geochem Geophys Geosyst. doi:10.1029/2001GC000289

  10. Christie DM, Carmichael ISE, Langmuir CH (1986) Oxidation states of mid-ocean ridge basalt glasses. Earth Planet Sci Lett 79:397–411. doi:10.1016/0012-821X(86)90195-0

    Article  Google Scholar 

  11. Daines MJ, Kohlstedt DL (1994) The transition from porous to channelized flow due to melt/rock reaction during melt migration. Geophys Res Lett 21:145–148. doi:10.1029/93GL03052

    Article  Google Scholar 

  12. Dick HJB (1989) Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geol Soc Spec Publ, London 42:71–105

  13. Elthon D (1979) High magnesia liquids as the parental magma for ocean floor basalts. Nature 278:514–518. doi:10.1038/278514a0

    Article  Google Scholar 

  14. Elthon D (1987) Petrology of gabbroic rocks from the mid-Cayman Rise spreading center. J Geophys Res 92:658–682. doi:10.1029/JB092iB01p00658

    Article  Google Scholar 

  15. Elthon D (1989) Pressure of origin of primary mid-ocean ridge basalts. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geol Soc of Am, Boulder, pp 125–136

    Google Scholar 

  16. Elthon D, Scarfe CM (1980) High-pressure phase equilibria of a high-magnesia basalt: implications for the origin of mid-ocean ridge basalts. Can Inst Wa Yrbk, pp 277–281

  17. Elthon D, Scarfe CM (1984) High-pressure phase equilibria of a high-magnesia basalt and the genesis of primary oceanic basalts. Am Mineral 69:1–15

    Google Scholar 

  18. Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119(2/3):197–212. doi:10.1007/BF00307281

    Article  Google Scholar 

  19. Ghiorso MS, Hirschmann MM, Reiners PW, Kress VC (2002) The pMELTS: a revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPA. Geochem Geophys Geosyst. doi:10.1029/2001GC000217

  20. Godard M, Bodinier JL, Vasseur G (1995) Effects of mineralogical reactions on trace element redistributions in mantle rocks during percolation processes: a chromatographic approach. Earth Planet Sci Lett 133:449–461. doi:10.1016/0012-821X(95)00104-K

    Article  Google Scholar 

  21. Green DH, Hibberson WO, Jaques AL (1979) Petrogenesis of mid-ocean ridge basalts. In: McElhinney MW (ed) The earth: its origin, structure and evolution. Academic Press, London

    Google Scholar 

  22. Hart SR (1993) Equilibration during mantle melting: a fractal tree model. Proc Natl Acad Sci USA 90:11914–11918. doi:10.1073/pnas.90.24.11914

    Article  Google Scholar 

  23. Jackson MD, Ohnenstetter M (1981) Peridotite and gabbroic structures in the Monte Maggiore Massif, Alpine Corsica. J Geol 89:703–719

    Google Scholar 

  24. Hess PC (1992) Phase equilibria constraints on the Origin of Ocan Floor Basalts. Am Geophys Union Monogr 71:67–102

    Google Scholar 

  25. Kelemen PB, Joyce DB, Webster JD, Holloway JR (1990) Reaction between ultramafic wall rock and fractionating basaltic magma: Part II, Experimental investigation of reaction between olivine tholeiite and harzburgite at 1150 and 1050°C and 5 kbar. J Petrol 31:99–134

    Google Scholar 

  26. Kelemen PB, Shimizu N, Salters VJM (1995) Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature 375:747–753. doi:10.1038/375747a0

    Article  Google Scholar 

  27. Kelemen PB, Hirth G, Shimizu N, Spiegelman M, Dick HJB (1997) A review of melts migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Philos Trans R Soc Lond A 355:283–318. doi:10.1098/rsta.1997.0010

    Article  Google Scholar 

  28. Kinzler RJ (1997) Melting of mantle peridotite at pressures approaching the spinel to garnet transition: application to mid-ocean ridge basalt petrogenesis. J Geophys Res 102:853–874. doi:10.1029/96JB00988

    Article  Google Scholar 

  29. Kinzler RJ, Grove TL (1992) Primary magmas of mid-ocean ridge basalts 2. Applications. J Geophys Res 97:6907–6926. doi:10.1029/91JB02841

    Article  Google Scholar 

  30. Kinzler RJ, Grove TL (1993) Corrections and further discussion of the primary magmas of mid-ocean ridge basalts, 1 and 2. J Geophys Res 98:22339–22347. doi:10.1029/93JB02164

    Article  Google Scholar 

  31. Klein EM, Langmuir CH (1987) Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J Geophys Res 92:8089–8115. doi:10.1029/JB092iB08p08089

    Article  Google Scholar 

  32. Kogiso T, Hirose K, Takahashi E (1998) Melting experiments on homogeneous mixtures of peridotite and basalt: application to the genesis of ocean island basalts. Earth Planet Sci Lett 162:45–61. doi:10.1016/S0012-821X(98)00156-3

    Article  Google Scholar 

  33. Kubo K (2002) Dunite formation processes in highly depleted peridotite: Case study of the Iwanaidake, Hokkaido, Japan. J Petrol 43:423–448. doi:10.1093/petrology/43.3.423

    Article  Google Scholar 

  34. Langmuir CH, Klein EM, Plank T (1992) Petrological systematics of mid-ocean ridge basalts: constraints on melt generation beneath ocean ridges. Am Geophys Union Monogr 71:183–280

    Google Scholar 

  35. Laporte D, Toplis MJ, Seyler M, Devidal JL (2004) A new experimental technique for extracting liquids from peridotite at very low degrees of melting: application to partial melting of depleted peridotite. Contrib Mineral Petrol 146:463–484. doi:10.1007/s00410-003-0509-3

    Article  Google Scholar 

  36. Laporte D, Schiano P, Boivin P (2006) The composition of low degree melts of fertile peridotites at 1 and 1.3 GPa. EMPG XI (XIth International Symposium on Experimental Mineralogy, Petrology and Geochemistry), Bristol

  37. Laubier M, Schiano P, Doucelance R, Ottolini L, Laporte D (2007) Olivine-hosted melt inclusions and melting processes beneath the famous zone (mid-atlantic ridge). Chem Geol 240:129–150. doi:10.1016/j.chemgeo.2007.02.002

    Article  Google Scholar 

  38. McKenzie D, Bickle MJ (1988) The volume and composition of melt generated by extension of the lithosphere. J Petrol 29:625–697

    Google Scholar 

  39. McKenzie D, O’Nions RK (1991) Partial melt distributions from inversion of rare Earth element concentrations. J Petrol 32:1021–1091

    Google Scholar 

  40. Morgan Z, Liang Y (2003) An experimental study of the kinetics of harzburgite reactive dissolution with applications to dunite dike formation. Earth Planet Sci Lett 214:59–74. doi:10.1016/S0012-821X(03)00375-3

    Article  Google Scholar 

  41. Morgan Z, Liang Y (2005) An experimental study of the kinetics of lhezolite reactive dissolution with applications to dunite dike formation. Contrib Mineral Petrol 150:369–385. doi:10.1007/s00410-005-0033-8

    Article  Google Scholar 

  42. Navon O, Stolper EM (1987) Geochemical consequences of melt percolation–the upper mantle as a chromatographic column. J Geol 95:285–307

    Article  Google Scholar 

  43. Niu Y (1997) Mantle melting and melt extraction processes beneath Ocean Ridges: evidence from abyssal peridotites. J Petrol 38:1047–1074. doi:10.1093/petrology/38.8.1047

    Article  Google Scholar 

  44. Niu Y, Hékinian R (1997) Spreading-rate dependence of the extent of mantle melting beneath ocean ridges. Nature 385:326–329. doi:10.1038/385326a0

    Article  Google Scholar 

  45. Niu Y, Langmuir CH, Kinzler RJ (1997) The origin of abyssal peridotites: a new perspective. Earth Planet Sci Lett 152:251–265. doi:10.1016/S0012-821X(97)00119-2

    Article  Google Scholar 

  46. O’Hara MJ (1965) Primary magmas and the origin of basalts. Scot J Geol 1:19–40

    Article  Google Scholar 

  47. O’Hara MJ (1968) Are ocean floor basalts primary magma? Nature 220:683–686. doi:10.1038/220683a0

    Article  Google Scholar 

  48. O’Hara MJ (1977) Geochemical evolution during fractional crystallization of a periodically refilled magma chamber. Nature 266:503–507. doi:10.1038/266503a0

    Article  Google Scholar 

  49. O’Hara MJ, Mathews RE (1981) Geochemical evolution in a advancing periodically replenished, periodically tapped, continuously fractionated magma chamber. J Geol Soc Lond 138:237–277. doi:10.1144/gsjgs.138.3.0237

    Google Scholar 

  50. Quick JE (1981) The origin and significance of large, tabular dunite bodies in the Trinity peridotite, northern California. Contrib Mineral Petrol 78:413–422. doi:10.1007/BF00375203

    Article  Google Scholar 

  51. Rampone E, Romairone A, Hofmann AW (2004) Contrasting bulk and mineral chemistry in depleted mantle peridotites: evidence for reactive porous flow. Earth Planet Sci Lett 218:491–506. doi:10.1016/S0012-821X(03)00679-4

    Article  Google Scholar 

  52. Shimizu N (1998) The geochemistry of olivine-hosted melt inclusions in a Famous basalt ALV519–4-1. Phys Earth Planet Int 107:183–201. doi:10.1016/S0031-9201(97)00133-7

    Article  Google Scholar 

  53. Sobolev AV, Shimizu N (1993) Ultra-depleted primary melt included in an olivine from the Mid-Atlantic Ridge. Nature 363:151–154. doi:10.1038/363151a0

    Article  Google Scholar 

  54. Spiegelman M, Kelemen PB, Aharonov E (2001) Causes and consequences of flow organization during melt transport: The reaction infiltration instability in compactible media. J Geophys Res 106(B2):2061–2077. doi:10.1029/2000JB900240

    Article  Google Scholar 

  55. Stolper E (1980) A phase diagram for mid-ocean ridge basalts: preliminary results and implications for petrogenesis. Contrib Mineral Petrol 74(1):13–27. doi:10.1007/BF00375485

    Article  Google Scholar 

  56. Suhr G (1999) Melt migration under oceanic ridges: inferences from reactive modelling of upper mantle hosted dunites. J Petrol 40:575–599. doi:10.1093/petrology/40.4.575

    Article  Google Scholar 

  57. Suhr G, Hellebrand E, Snow JE, Seck HA, Hofmann AW (2003) Significance of large, refractory dunite bodies in the upper mantle of the Bay of Islands Ophiolite. Geochem Geophys Geosyst. doi:10.1029/2001GC000277

  58. Takahashi N (1992) Evidence for melt segregation towards fractures in Horoman mantle peridotite complex. Nature 359:52–58. doi:10.1038/359052a0

    Article  Google Scholar 

  59. Tommasi A, Godard M, Coromina G, Dautria JM, Barsczus H (2004) Seismic anisotropy and compositionally induced velocity anomalies in the lithosphere above mantle plumes: a petrological and microstructural study of mantle xenoliths from French Polynesia. Earth Planet Sci Lett 227:539–556. doi:10.1016/j.epsl.2004.09.019

    Article  Google Scholar 

  60. Walker D, Shibata T, Delong SE (1979) Abyssal tholeiites from the Oceanographer Fracture Zone II. Phase equilibria and mixing. Contrib Mineral Petrol 71:111–125. doi:10.1007/BF00374440

    Article  Google Scholar 

  61. Yaxley (2000) Experimental study of the phase and melting relations of homogeneous basalt + peridotite mixtures and implications for the petrogenesis of flood basalts. Contrib Mineral Petrol 139:326–338

  62. Yoder HS (1976) Generation of basaltic magma. Natl Acad Sci, Washington DC, pp 143–144

    Google Scholar 

Download references

Acknowledgments

This study has benefited from discussions with Andréa Tommasi, Marguerite Godard and Muriel Laubier. Special thanks are due to the following persons: Jean-Luc Devidal for technical assistance with the electron microprobe; Jean-Marc Hénot for technical assistance with the scanning electron microscope; Ariel Provost for his mass-balance program; Kenneth Koga for assistance with algorithm pMELTS; Mhammed Benbakkar for the ICP-AES analysis of the synthetic basalt in Table 1. This study was supported by the program DyETI of the Institut National des Sciences de l’Univers (INSU-CNRS), through grants to D. Laporte and A. Tommasi. Many thanks to T. L. Grove and two anonymous reviewers for their constructive comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sarah Lambart.

Additional information

Communicated by T.L. Grove.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lambart, S., Laporte, D. & Schiano, P. An experimental study of focused magma transport and basalt–peridotite interactions beneath mid-ocean ridges: implications for the generation of primitive MORB compositions. Contrib Mineral Petrol 157, 429–451 (2009). https://doi.org/10.1007/s00410-008-0344-7

Download citation

Keywords

  • Dunite
  • Peridotite
  • Partial melting
  • Focused magma transport
  • Primitive MORB
  • Magma/rock interactions