Skip to main content

Advertisement

Log in

Late Mesozoic magmatism from the Daye region, eastern China: U–Pb ages, petrogenesis, and geodynamic implications

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Late Mesozoic dioritic and quartz dioritic plutons are widespread in the Daye region, eastern Yangtze craton, eastern China. Detailed geochronological, geochemical, and Sr–Nd isotopic studies have been undertaken for most of these plutons, in an attempt to provide a comprehensive understanding in the age, genesis and geodynamical control of the extensive magmatism. SHRIMP and LA-ICP-MS zircon U–Pb dating indicate that the plutons were emplaced in the range of latest Jurassic (ca. 152 Ma) to early Cretaceous (ca. 132 Ma), which was followed by dyke emplacement between 127 and 121 Ma and volcanism during the 130–113 Ma interval. Both diorites and quartz diorites are sodic, metaluminous, high-K calc-alkaline, and characterized by strongly fractionated, sub-parallel REE patterns without obvious Eu anomalies. The rocks are enriched in highly incompatible elements and large ion lithophile elements, but depleted in high field strength elements. Samples of diorite and quartz diorite have similar Sr–Nd isotopic compositions that are consistent with the early Cretaceous basalts and mafic intrusions throughout the eastern Yangtze craton. The geochemical and isotopic data, together with results of geochemical modeling, indicate an enriched mantle source for the plutonic rocks. The quartz diorites have geochemical signatures resembling adakites, such as high Al2O3 (15–19 wt.%), Sr (630–2,080 ppm), Na2O (>3.5 wt.%), negative Nb–Ta anomalies, low Y (7–19 ppm), Yb (0.5–1.8 ppm), Sc (5–15 ppm), and resultant high Sr/Y (45–200) and La/Yb (31–63) ratios. Genesis of the adakitic quartz diorites is best explained in terms of low-pressure intracrustal fractional crystallization of cumulates consisting of hornblende, plagioclase, K-feldspar, magnetite, and apatite from mantle-derived dioritic magmas. Mantle-derived magmatism broadly coeval with that of the Daye region also is widespread in other regions of the eastern Yangtze craton, reflecting large-scale melting of the lithospheric mantle during the Late Mesozoic. The large-scale magmatism was most likely driven by lithospheric extension associated with thinning of lithospheric mantle beneath the eastern China continent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ames L, Zhou GZ, Xiong BC (1996) Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons, central China. Tectonics 15:472–489. doi:10.1029/95TC02552

    Google Scholar 

  • Andersen T (2002) Correction of common lead in U–Pb analyses that do not report 204Pb. Chem Geol 192:59–79. doi:10.1016/S0009-2541(02)00195-X

    Google Scholar 

  • Atherton MP, Petford N (1993) Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 362:144–146. doi:10.1038/362144a0

    Google Scholar 

  • Baker MB, Hirschmann MM, Ghiorso MS, Stolper EM (1995) Compositions of near-solidus peridotite melts from experimental and thermodynamic calculations. Nature 375:308–311. doi:10.1038/375308a0

    Google Scholar 

  • Beard JS, Lofgren GE (1991) Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb. J Petrol 32:365–401

    Google Scholar 

  • Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ et al (2003) TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chem Geol 200:155–170. doi:10.1016/S0009-2541(03)00165-7

    Google Scholar 

  • Bourdon E, Eissen JP, Monzier M, Robin C, Martin H, Cotten J et al (2002) Adakite-like lavas from Antisana volcano (Ecuador): evidence for slab melt metasomatism beneath the Andean Northern volcanic zone. J Petrol 43:199–217. doi:10.1093/petrology/43.2.199

    Google Scholar 

  • Boynton WW (1984) Geochemistry of the rare earth element: meteorite studies. In: Henderson P (ed) Rare Earth element geochemistry: developments in geochemistry. Elsevier, Amsterdam, pp 89–92

    Google Scholar 

  • Castillo PR, Janney PE, Solidum RU (1999) Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting. Contrib Mineral Petrol 134:33–51. doi:10.1007/s004100050467

    Google Scholar 

  • Castillo PR (2006) An overview of adakite petrogenesis. Chin Sci Bull 51:257–268. doi:10.1007/s11434-006-0257-7

    Google Scholar 

  • Chang YF, Liu XP, Wu YC (1991) The copper–iron belt of the lower and middle reaches of the Changjiang River. Geological Publishing House, Beijing (in Chinese with English abstract)

    Google Scholar 

  • Chen JF, Li XM, Zhou TX, Foland KA (1991) 40Ar/39Ar dating for the Yueshan diorite, Anhui province and the estimated formation time of the association ore deposit. Geoscience 5:91–99 (in Chinese with English abstract)

    Google Scholar 

  • Chen L, Wang T, Zhao L, Zheng TY (2008) Distinct lateral variation of lithospheric thickness in the Northeastern North China Craton. Earth Planet Sci Lett 267:56–68

    Google Scholar 

  • Chung SL, Liu DY, Ji JQ, Chu MF, Lee HY, Wen DJ et al (2003) Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet. Geology 31:1021–1024. doi:10.1130/G19796.1

    Google Scholar 

  • Compston W, Williams IS, Kirschvink JL, Zichao Z, Guogan MA (1992) Zircon U–Pb ages for the Early Cambrian time scale. J Geol Soc 149:171–184. doi:10.1144/gsjgs.149.2.0171

    Google Scholar 

  • Davis GA, Darby BJ, Zheng YD, Spell TL (2002) Geometric and temporal evolution of an extensional detachment fault, Hohhot metamorphic core complex, Inner Mongolia, China. Geology 30:1003–1006. doi:10.1130/0091-7613(2002)030>1003:GATEOA<2.0.CO;2

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1983) An introduction to the rock-forming minerals. Longman, Hong Kong

    Google Scholar 

  • Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665. doi:10.1038/347662a0

    Google Scholar 

  • DePaolo DJ (1981) Trace element and isotopic effects of combined wall-rock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202. doi:10.1016/0012-821X(81)90153-9

    Google Scholar 

  • Di YJ, Wu GG, Zhang D, Song B, Zang WS, Zhang ZY et al (2005) SHRIMP U–Pb zircon geochronology of the Xiaotongguanshan and Shatanjiao intrusions and its petrological implications in the Tongling area, Anhui. Acta Geol Sin 79:795–802

    Google Scholar 

  • Drummond MS, Defant MJ (1990) A model for trondhjemite–tonalite–dacite genesis and crustal growth via slab melting: Archean to modern comparisons. J Geophys Res 95(B):21503–21521

    Google Scholar 

  • Falloon TJ, Green DH, O’Neill HSC, Hibberson WO (1997) Experimental tests of low degree peridotite partial melt compositions: implications for the nature of anhydrous near-solidus peridotite melts at 1 GPa. Earth Planet Sci Lett 152:149–162. doi:10.1016/S0012-821X(97)00155-6

    Google Scholar 

  • Fan QC, Liu RX, Li HM, Li N, Sui JL, Lin ZR (1998) Zircon chronology and REE geochemistry of granulite xenoliths at Hannuoba. Chin Sci Bull 43:1510–1515. doi:10.1007/BF02883438

    Google Scholar 

  • Faure G (1986) Principles of isotope geology. Wiley, New York

    Google Scholar 

  • Gao S, Rudnick RL, Yuan HL, Liu XM, Liu YS, Xu WL et al (2004) Recycling lower continental crust in the North China craton. Nature 432:892–897. doi:10.1038/nature03162

    Google Scholar 

  • Geldmacher J, Hoernle K, Klügel A, van den Bogaard P, Bindeman I (2008) Geochemistry of a new enriched mantle type locality in the northern hemisphere: implications for the origin of the EM-I source. Earth Planet Sci Lett 265:167–182. doi:10.1016/j.epsl.2007.10.001

    Google Scholar 

  • Graviou P, Peucat JJ, Auvray B, Vidal P (1988) The Cadomian Orogeny in the northern Armorican Massif: petrological and geochronological constraints on a geodynamic model. Hercynica 1:1–13

    Google Scholar 

  • Green DH (1973) Experimental melting studies on a model upper mantle composition at high-pressure under water-saturated and water-undersaturated conditions. Earth Planet Sci Lett 19:37–53. doi:10.1016/0012-821X(73)90176-3

    Google Scholar 

  • Grimmer JC, Ratschbacher L, McWilliams M (2003) When did the ultrahigh-pressure rocks reach the surface? A 207Pb/206Pb zircon, 40Ar/39Ar white mica, Si-in-white mica, single-grain provenance study of Dabie Shan synorogenic foreland sediments. Chem Geol 197:87–110. doi:10.1016/S0009-2541(02)00321-2

    Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the earth: the relationship between mantle, continental-crust, and oceanic-crust. Earth Planet Sci Lett 90:297–314. doi:10.1016/0012-821X(88)90132-X

    Google Scholar 

  • Huang XL, Xu YG, Liu DY (2004) Geochronology, petrology and geochemistry of the granulite xenoliths from Nushan, east China: implication for a heterogeneous lower crust beneath the Sino-Korean Craton. Geochim Cosmochim Acta 68:127–149. doi:10.1016/S0016-7037(03)00416-2

    Google Scholar 

  • Hubei Bureau of Geology, Mineral Resources (1990) Regional Geology of Hubei Province. Geological Publishing Housing, Beijing (in Chinese with English abstract)

    Google Scholar 

  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol 211:47–69. doi:10.1016/j.chemgeo.2004.06.017

    Google Scholar 

  • Jahn BM, Wu FY, Lo CH, Tsai CH (1999) Crust–mantle interaction induced by deep subduction of the continental crust: geochemical and Sr–Nd isotopic evidence from post-collisional mafic–ultramafic intrusions of the northern Dabie complex, central China. Chem Geol 157:119–146. doi:10.1016/S0009-2541(98)00197-1

    Google Scholar 

  • Kay RW (1978) Aleutian magnesian andesites: melts from subducted Pacific ocean crust. J Volcanol Geotherm Res 4:117–132. doi:10.1016/0377-0273(78)90032-X

    Google Scholar 

  • Kay RW, Kay SM (1993) Delamination and delamination magmatism. Tectonophysics 219:177–189. doi:10.1016/0040-1951(93)90295-U

    Google Scholar 

  • Li JW, Vasconcelos PM, Zhang J, Zhou MF, Zhang XJ, Yang FH (2003) 40Ar/39Ar constraints on a temporal link between gold mineralization, magmatism, and continental margin transtension in the Jiaodong gold province, Eastern China. J Geol 111:741–751. doi:10.1086/378486

    Google Scholar 

  • Li JW, Zhao XF, Zhou MF, Vasconcelos PM, Ma CQ (2008) Origin of the Tongshankou porphyry-skarn Cu-Mo deposit, eastern Yangtze craton, Eastern China: geochronological, geochemical, and Sr–Nd–Hf isotopic constraints. Miner Depos 43:315–336. doi:10.1007/s00126-007-0161-3

    Google Scholar 

  • Li WX, Li XH (2003) Adakitic granites within the NE Jiangxi ophiolites, South China: geochemical and Nd isotopic evidence. Precambrian Res 122:29–44. doi:10.1016/S0301-9268(02)00206-1

    Google Scholar 

  • Li ZX, Li XH (2007) Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a Flat-slab subduction model. Geology 35:179–182. doi:10.1130/G23193A.1

    Google Scholar 

  • Liu H, Qiu JS, Lo CH, Xu XS, Ling WL, Wang DZ (2002) Petrogenesis of the Mesozoic potash-rich volcanic rocks in the Luzong basin, Anhui Province: geochemical constraints. Geochimica 31:129–140 (in Chinese with English abstract)

    Google Scholar 

  • Liu JL, Davis GA, Lin ZY, Wu FY (2005) The Liaonan metamorphic core complex, Southeastern Liaoning Province, North China: a likely contributor to Cretaceous rotation of Eastern Liaoning, Korea and contiguous areas. Tectonophysics 407:65–80. doi:10.1016/j.tecto.2005.07.001

    Google Scholar 

  • Lü QT, Hou ZQ, Zhao JH, Shi DN, Wu XZ, Chang YF et al (2004) Deep seismic reflection profiling revealing the complex crustal structure of the Tongling ore district. Sci China D 47:193–200. doi:10.1360/02YD0277

    Google Scholar 

  • Ma CQ, Li ZC, Ehlers C, Yang KG, Wang RJ (1998) A post-collisional magmatic plumbing system: Mesozoic granitoid plutons from the Dabieshan high-pressure and ultrahigh-pressure metamorphic zone, east-central China. Lithos 45:431–456. doi:10.1016/S0024-4937(98)00043-7

    Google Scholar 

  • Macpherson CG, Dreher ST, Thirlwall MF (2006) Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet Sci Lett 243:581–593. doi:10.1016/j.epsl.2005.12.034

    Google Scholar 

  • Mao JW, Stein H, Du A, Zhou TH (2004) Re–Os dating of molybdenite from Cu–Au–Mo deposits in the Mid-Lower reaches of the Yangtze River belt and implication for mineralization. Acta Geol Sin 78:121–131

    Google Scholar 

  • Martin H (1987) Petrogenesis of Archean trondhjemites, tonalites and granodiorites from eastern Finland: major and trace element geochemistry. J Petrol 28:921–953

    Google Scholar 

  • Martin H, Smithies RH, Rapp R, Moyen JF, Champion D (2005) An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79:1–24. doi:10.1016/j.lithos.2004.04.048

    Google Scholar 

  • McCulloch MT, Bennett VC (1994) Progressive growth of the earth’s continental-crust and depleted mantle: geochemical constraints. Geochim Cosmochim Acta 58:4717–4738. doi:10.1016/0016-7037(94)90203-8

    Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253. doi:10.1016/0009-2541(94)00140-4

    Google Scholar 

  • Menzies M, Rogers N, Tindle A, Hawkesworth C (1987) Metasomatic and enrichment processes in lithospheric peridotites, an effect of asthenosphere–lithosphere interaction. In: Menzies MK, Hawkesworth CJ (eds) Mantle metasomatism. Academic Press Geology Series, London, pp 313–361

    Google Scholar 

  • Menzies MA, Fan W, Zhang M (1993) Palaeozoic and Cenozoic lithoprobes and loss of 120 km of Achaean lithosphere, Sino-Korean craton, China. In: Pritchard HM, Alabaster T, Harris NBW, Neary CR (eds) Magmatic processes and plate tectonics. Geological Society, London, pp 71–81

    Google Scholar 

  • Muir RJ, Weaver SD, Bradshaw JD, Eby GN, Evans JA (1995) The Cretaceous separation point Batholith, New Zealand: granitoid magmas formed by melting of mafic lithosphere. J Geol Soc 152:689–701. doi:10.1144/gsjgs.152.4.0689

    Google Scholar 

  • Nicholls IA, Ringwood AE (1972) Production of silica-saturated tholeiitic magmas in island arcs. Earth Planet Sci Lett 17:243–246. doi:10.1016/0012-821X(72)90282-8

    Google Scholar 

  • Nielsen R (2006) Geochemical Earth Reference Model (GERM) partition coefficient (Kd) database. Available at http://www.geo.oregonstate.edu/people/faculty/nielsenr.htm

  • Nockolds SR, Allen R (1953) The geochemistry of some igneous rock series. Geochim Cosmochim Acta 4:105–142. doi:10.1016/0016-7037(53)90055-6

    Google Scholar 

  • Peacock SM, Rushmer T, Thompson AB (1994) Partial melting of subducting oceanic-crust. Earth Planet Sci Lett 121:227–244. doi:10.1016/0012-821X(94)90042-6

    Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace-element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Google Scholar 

  • Petford N, Atherton M (1996) Na-rich partial melts from newly underplated basaltic crust: The Cordillera Blanca Batholith, Peru. J Petrol 37:1491–1521. doi:10.1093/petrology/37.6.1491

    Google Scholar 

  • Qi L, Jing H, Gregoire DC (2000) Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta 51:507–513. doi:10.1016/S0039-9140(99)00318-5

    Google Scholar 

  • Rapp RP, Shimizu N, Norman MD, Applegate GS (1999) Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chem Geol 160:335–356. doi:10.1016/S0009-2541(99)00106-0

    Google Scholar 

  • Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32-Kbar: implications for continental growth and crust–mantle recycling. J Petrol 36:891–931

    Google Scholar 

  • Rapp RP, Watson EB, Miller CF (1991) Partial melting of amphibolite eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Res 51:1–25. doi:10.1016/0301-9268(91)90092-O

    Google Scholar 

  • Rayleigh JWS (1896) Theoretical considerations respecting the separation of gases by diffusion and similar processes. Philos Mag 42:77–107

    Google Scholar 

  • Richards JP, Kerrich R (2007) Adakite-like rocks: their origins and questionable role in metallogenesis. Econ Geol 102:537–576. doi:10.2113/gsecongeo.102.4.537

    Google Scholar 

  • Rollinson HR (1993) Using geochemical data: evaluation, presentation, interpretation. Wiley, New York

    Google Scholar 

  • Rudnick RL (1995) Making continental crust. Nature 378:571–578. doi:10.1038/378571a0

    Google Scholar 

  • Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33:267–309. doi:10.1029/95RG01302

    Google Scholar 

  • Rushmer T (1991) Partial melting of 2 amphibolites: contrasting experimental results under fluid-absent conditions. Contrib Mineral Petrol 107:41–59. doi:10.1007/BF00311184

    Google Scholar 

  • Sajona FG, Maury RC, Bellon H, Cotten J, Defant MJ, Pubellier M (1993) Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines. Geology 21:1007–1010. doi:10.1130/0091-7613(1993)021>1007:IOSATG<2.3.CO;2

    Google Scholar 

  • Sen C, Dunn T (1994) Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 Gpa: implications for the origin of adakites. Contrib Mineral Petrol 117:394–409. doi:10.1007/BF00307273

    Google Scholar 

  • Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243. doi:10.1016/0016-7037(70)90009-8

    Google Scholar 

  • Shu QA, Chen PL, Chen JR (1992) Geology of Fe–Cu ore deposits in eastern Hubei Province. Press of Metallurgical Industry, Beijing (in Chinese with English abstract)

    Google Scholar 

  • Störmer JCJ, Nicholls J (1978) XLFRAC: a program for interactive testing of magmatic differentiation models. Comput Geosci 4:143–159. doi:10.1016/0098-3004(78)90083-3

    Google Scholar 

  • Su XD, Liu SM (1994) Application of isotopic geology to the study of Fe–Cu deposits in eastern Hubei. Geol Prospect 30:27–32 (in Chinese with English abstract)

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Spec Pub 42:313–345

    Google Scholar 

  • Tatsumi Y (2006) High-Mg Andesites in the Setouchi Volcanic Belt, Southwestern Japan: analogy to Archean magmatism and continental crust formation? Annu Rev Earth Sci 34:467–499. doi:10.1146/annurev.earth.34.031405.125014

    Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford

    Google Scholar 

  • Tian ZY, Han P, Xu KD (1992) The Mesozoic–Cenozoic East China rift system. Tectonophysics 208:341–363. doi:10.1016/0040-1951(92)90354-9

    Google Scholar 

  • Wang Q, Wyman DA, Xu JF, Jian P, Zhao ZH (2007) Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: implications for partial melting and delamination of thickened lower crust. Geochim Cosmochim Acta 71:2609–2636. doi:10.1016/j.gca.2007.03.008

    Google Scholar 

  • Wang Q, Wyman DA, Xu JF, Zhao ZH, Jian P, Xiong XL et al (2006) Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): implications for geodynamics and Cu–Au mineralization. Lithos 89:424–446. doi:10.1016/j.lithos.2005.12.010

    Google Scholar 

  • Wang Q, Zhao ZH, Bao ZW, Xu JF, Liu W, Li CF et al (2004) Geochemistry and petrogenesis of the Tongshankou and Yinzu adakitic intrusive rocks and the associated porphyry copper–molybdenum mineralization in southeast Hubei, east China. Resour Geol 54:137–152

    Google Scholar 

  • Wang YL, Zhang Q, Wang Y (2001) Geochemical characteristics of volcanic rocks from Ningwu area, and its significance. Acta Petrol Sin 17:565–575 (in Chinese with English abstract)

    Google Scholar 

  • Whalen JB, Jenner GA, Longstaffe FJ (1996) Geochemical and isotopic (O, Nd, Pb and Sr) constraints on A-type granite petrogenesis based on the Topsails Igneous Suite, Newfoundland Appalachians. J Petrol 87:1463–1489. doi:10.1093/petrology/37.6.1463

    Google Scholar 

  • Wareham CD, Millar IL, Vaughan APM (1997) The generation of sodic granite magmas, western Palmer Land, Antarctic Peninsula. Contrib Mineral Petrol 128:81–96. doi:10.1007/s004100050295

    Google Scholar 

  • Wilde SA, Zhou XH, Nemchin AA, Sun M (2003) Mesozoic crust–mantle interaction beneath the North China craton: a consequence of the dispersal of Gondwanaland and accretion of Asia. Geology 31:817–820. doi:10.1130/G19489.1

    Google Scholar 

  • Wilson M (1989) Igneous petrogenesis: a global tectonic approach. Chapman & Hall, London, p 466

    Google Scholar 

  • Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72. doi:10.1016/j.epsl.2004.12.005

    Google Scholar 

  • Wu CL, Zhou XR, Huang XC, Zhang CH, Huang WM (1996) 40Ar/39Ar chronology of intrusive rocks from Tongling. Acta Petrol Miner 15:299–306 (in Chinese with English abstract)

    Google Scholar 

  • Wu FY, Lin JQ, Wilde SA, Zhang XO, Yang JH (2005a) Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet Sci Lett 233:103–119. doi:10.1016/j.epsl.2005.02.019

    Google Scholar 

  • Wu FY, Yang JH, Wilde SA, Zhang XO (2005b) Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China. Chem Geol 221:127–156. doi:10.1016/j.chemgeo.2005.04.010

    Google Scholar 

  • Wu LS, Zhou XQ (1997) Re–Os isotopic dating of the Chengmenshan copper deposit, Jiangxi Province. Miner Depos 16:376–381 (in Chinese with English abstract)

    Google Scholar 

  • Xie GQ, Mao JW, Li R, Zhou SD, Ye HR, Yan QR et al (2006) SHRIMP U–Pb age of the Dasi Formation volcanic rocks from southeastern Hubei, mid-lower reaches of the Yangtze River. Sci China D 51:2283–2291

    Google Scholar 

  • Xie JC, Yang XY, Du JG, Sun WD (2008) Zircon U–Pb geochronology of the Mesozoic intrusive rocks in the Tongling region: implications for Cu–Au mineralization. Acta Petrol Sin (in press)

  • Xing FM, Xu X (1994) Two A-type granite belts from Anhui. Acta Petrol Sin 10:357–369 (in Chinese with English abstract)

    Google Scholar 

  • Xing FM, Xu X (1996) High-potassium calc-alkaline intrusive rocks in Tongling area, Anhui province. Geochimica 25:29–38 (in Chinese with English abstract)

    Google Scholar 

  • Xu HJ, Ma CQ, Ye K (2007) Early Cretaceous granitoids and their implications for the collapse of the Dabie orogen, eastern China: SHRIMP zircon U–Pb dating and geochemistry. Chem Geol 240:238–259. doi:10.1016/j.chemgeo.2007.02.018

    Google Scholar 

  • Xu JF, Shinjo R, Defant MJ, Wang Q, Rapp RP (2002) Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: partial melting of delaminated lower continental crust? Geology 30:1111–1114. doi:10.1130/0091-7613(2002)030>1111:OOMAIR<2.0.CO;2

    Google Scholar 

  • Xu X, Xing FM (1994) Whole-rock and mineral Rb–Sr isochron ages of the three gabbros in Nanjing–Wuhu Area, China. Sci Geol Sin 29:309–312 (in Chinese with English abstract)

    Google Scholar 

  • Xu XS, O’Reilly SY, Griffin WL, Zhou XM (2000) Genesis of young lithospheric mantle in southeastern China: an LAM-ICPMS trace element study. J Petrol 41:111–148. doi:10.1093/petrology/41.1.111

    Google Scholar 

  • Xu YG, Huang XL, Ma JL, Wang YB, Iizuka Y, Xu JF et al (2004) Crust–mantle interaction during the tectono-thermal reactivation of the North China Craton: constraints from SHRIMP zircon U–Pb chronology and geochemistry of Mesozoic plutons from western Shandong. Contrib Mineral Petrol 147:750–767. doi:10.1007/s00410-004-0594-y

    Google Scholar 

  • Yan J, Chen JF, Xu XS (2008) Geochemistry of Cretaceous mafic rocks from the Lower Yangtze region, eastern China: characteristics and evolution of the lithospheric mantle. J Asian Earth Sci 33:177–193. doi:10.1016/j.jseaes.2007.11.002

    Google Scholar 

  • Yang ZY, Cheng YQ, Wang HZ (1986) The Geology of China. Oxford University Press, New York

    Google Scholar 

  • Yu JH, Xu XS, O’Reilly SY, Griffin WL, Zhang M (2003) Granulite xenoliths from Cenozoic Basalts in SE China provide geochemical fingerprints to distinguish lower crust terranes from the North and South China tectonic blocks. Lithos 67:77–102. doi:10.1016/S0024-4937(02)00253-0

    Google Scholar 

  • Yuan HL, Gao S, Liu XM, Li HM, Gunther D, Wu FY (2004) Accurate U–Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostand Geoanal Res 28:353–370. doi:10.1111/j.1751-908X.2004.tb00755.x

    Google Scholar 

  • Zhai YS, Xiong YL, Yao SZ, Lin XD (1996) Metallogeny of copper and iron deposits in the Eastern Yangtse Craton, east-central China. Ore Geol Rev 11:229–248. doi:10.1016/0169-1368(96)00003-0

    Google Scholar 

  • Zhai YS, Yao SZ, Lin XD, Zhou XR (1992) Metallogeny of Fe–Cu–(Au) ore deposits in mid-lower Yangtze River. Geological Publishing House, Beijing (in Chinese with English abstract)

    Google Scholar 

  • Zhou XM, Li WX (2000) Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics 326:269–287. doi:10.1016/S0040-1951(00)00120-7

    Google Scholar 

  • Zhu G, Wang YS, Liu GS, Niu ML, Xie CL, Li CC (2005) 40Ar/39Ar dating of strike-slip motion on the Tan-Lu fault zone, East China. J Struct Geol 27:1379–1398. doi:10.1016/j.jsg.2005.04.007

    Google Scholar 

Download references

Acknowledgments

We acknowledge financial supports provided by Natural Science Foundation of China (grants 40334037 and 40521001), Chinese Ministry of Education (IRT0441), Chinese Ministry of Science and Technology (2007DFA21230), the 111 Project (B07039), and the CRGC grants of the University of Hong Kong. Ms. Xiao Fu and Dr. Liang Qi are thanked for major and trace elemental analyses, respectively. Drs. Yan QR, Liu XM, and Chu ZY provided expert assistance in U–Pb dating and Sr–Nd isotope analysis, respectively. We thank Drs. Haibo Zou and Qiang Wang for their insights on an early draft of the paper. Constructive reviews by Wolfgang Siebel and Joerg Geldmacher have been of considerable importance in improving the paper, for which we are very grateful. Our thanks extend to Profs. Hans Keppler and Jochen Hoefs for useful editorial suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Wei Li.

Additional information

Communicated by H. Keppler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, JW., Zhao, XF., Zhou, MF. et al. Late Mesozoic magmatism from the Daye region, eastern China: U–Pb ages, petrogenesis, and geodynamic implications. Contrib Mineral Petrol 157, 383–409 (2009). https://doi.org/10.1007/s00410-008-0341-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-008-0341-x

Keywords

Navigation