Skip to main content
Log in

Historic magmatism on the Reykjanes Peninsula, Iceland: a snap-shot of melt generation at a ridge segment

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We present new compositional data on a suite of historic lava flows from the Reykjanes Peninsula, Iceland. They were erupted over a short time period between c. 940 and c. 1340 ad and provide a snap-shot view of melt generation and evolution processes beneath this onshore, 65 km long, ridge segment. The lavas are tholeiitic basalts (MgO 6.5–9.2 wt%) and sparsely (≪5%) olivine and/or plagioclase phyric (±trace clinopyroxene). Individual eruptive events show remarkable compositional homogeneity. Despite a limited variation in Sr–Nd isotope compositions, high-precision double-spike Pb isotope data show tight coherent arrays that, together with correlations with incompatible trace element ratios, indicate control by binary mixing processes. Poor correlations with elemental abundances require that this mixing took place prior to extensive fractional crystallisation. Olivines in the historic lavas have light δ18O values (+4.2 to +4.3‰), which is likely to be a feature of the enriched mantle source to Reykjanes Peninsula lavas. High precision Pb isotope analyses of other post-glacial Reykjanes Peninsula lavas show significant variability in 207Pb/204Pb and 208Pb/204Pb at lower 206Pb/204Pb values than in the historic lavas. This variation demonstrates that at least three compositionally distinct components within the mantle are required to explain the Pb isotope variations within the Reykjanes Peninsula as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abouchami W, Galer SJG, Hofmann AW (2000) High precision lead isotope systematics of lavas from the Hawaiian Scientific Drilling Project. Chem Geol 169:187–209. doi:10.1016/S0009-2541(00)00328-4

    Article  Google Scholar 

  • Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53:197–214. doi:10.1016/0016-7037(89)90286-X

    Article  Google Scholar 

  • Baker JA, Waight TE, Ulfbeck DJ (2002) Rapid and highly reproducible analysis of rare earth elements by multiple collector ICP-MS. Geochim Cosmochim Acta 66:3635–3646. doi:10.1016/S0016-7037(02)00921-3

    Article  Google Scholar 

  • Baker JA, Peate DW, Waight TE, Meyzen C (2004) Pb isotopic analysis of standards and samples using a 207Pb–204Pb spike and thallium to correct for mass bias with a double-focusing MC–ICP-MS. Chem Geol 211:275–303. doi:10.1016/j.chemgeo.2004.06.030

    Article  Google Scholar 

  • Baker JA, Peate DW, Thirlwall MF, Waight TE (2005) Reply to comment by Albarède et al. on “Pb isotopic analysis of standards and samples using a 207Pb–204Pb spike and thallium to correct for mass bias with a double-focusing MC–ICP-MS”. Chem Geol 217:175–179. doi:10.1016/j.chemgeo.2004.12.002

    Article  Google Scholar 

  • Bindeman IN, Sigmarsson O, Eiler J (2006) Time constraints on the origin of large volume basalts derived from O-isotope and trace element mineral zoning and U-series disequilibria in the Laki and Grímsvötn volcanic system. Earth Planet Sci Lett 245:245–259. doi:10.1016/j.epsl.2006.02.029

    Article  Google Scholar 

  • Blichert-Toft J, Agranier A, Andres M, Kingsley R, Schilling J-G, Albarède F (2005) Geochemical segmentation of the Mid-Atlantic Ridge north of Iceland and ridge—hot spot interaction in the North Atlantic. Geochem Geophys Geosyst 6(1), Q01E19. doi:10.1029/2004GC000788

  • Brandon AD, Graham DW, Waight TE, Gautason B (2007) 186Os and 187Os enrichments and high-3He/4He sources in the Earth’s mantle: evidence from Icelandic picrites. Geochim Cosmochim Acta 71:4570–4591. doi:10.1016/j.gca.2007.07.015

    Article  Google Scholar 

  • Burnard P, Harrison D (2005) Argon isotope constraints on modification of oxygen isotopes in Iceland basalts by surficial processes. Chem Geol 216:143–156. doi:10.1016/j.chemgeo.2004.11.001

    Article  Google Scholar 

  • Chauvel C, Hémond C (2000) Melting of a complete section of recycled oceanic crust: trace element and Pb isotopic evidence from Iceland. Geochem Geophys Geosyst 1. doi:10.1029/1999GC000002

  • Clifton AE, Kattenhorn SA (2006) Structural architecture of a highly oblique divergent plate boundary segment. Tectonophysics 419:27–40. doi:10.1016/j.tecto.2006.03.016

    Article  Google Scholar 

  • Condomines M, Grönvold K, Hooker PJ, Muehlenbachs K, O’Nions RK, Oskarsson N et al (1983) Helium, oxygen, strontium and neodymium isotopic relationships in Icelandic volcanics. Earth Planet Sci Lett 66:25–136. doi:10.1016/0012-821X(83)90131-0

    Article  Google Scholar 

  • Eiler JM (2001) Oxygen isotope variations of basaltic lavas and upper mantle rocks. Rev Miner Geochem 43:319–364. doi:10.2138/gsrmg.43.1.319

    Article  Google Scholar 

  • Eiler JM, Grönvold K, Kitchen N (2000) Oxygen isotope evidence for the origin of chemical variations in lavas from Theistareykir volcano in Iceland’s northern volcanic zone. Earth Planet Sci Lett 184:269–286. doi:10.1016/S0012-821X(00)00318-6

    Article  Google Scholar 

  • Einarsson S, Johannesson H, Sveinbjörnsdottir AE (1991) Krisuvikureldar II: Kapelluhraun og gatan um aldur Hellnahrauns. Jökull 41:61–78 (in Icelandic)

    Google Scholar 

  • Eisele J, Sharma M, Galer SJG, Blichert-Toft J, Devey CW, Hofmann AW (2002) The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth Planet Sci Lett 196:197–212. doi:10.1016/S0012-821X(01)00601-X

    Article  Google Scholar 

  • Eisele J, Abouchami W, Galer SJG, Hofmann AW (2003) The 320 kyr Pb isotope evolution of Mauna Kea lavas recorded in the HSDP-2 drill core. Geochem Geophys Geosyst 4(5):8710. doi:10.1029/2002GC0000339

    Article  Google Scholar 

  • Elderfield H, Greaves MJ (1981) Strontium isotope geochemistry of Icelandic geothermal systems and implications for sea water chemistry. Geochim Cosmochim Acta 45:2201–2212. doi:10.1016/0016-7037(81)90072-7

    Article  Google Scholar 

  • Elliott TR, Hawkesworth CJ, Grönvold K (1991) Dynamic melting of the Iceland plume. Nature 351:201–206. doi:10.1038/351201a0

    Article  Google Scholar 

  • Fisk MR, Schilling JG, Sigurdsson H (1980) An experimental investigation of Iceland and Reykjanes Ridge tholeiites, I: phase relations. Contrib Mineral Petrol 74:361–374. doi:10.1007/BF00518117

    Google Scholar 

  • Fitton JG, Saunders AD, Norry MJ, Hardarson BS, Taylor RN (1997) Thermal and chemical structure of the Iceland plume. Earth Planet Sci Lett 153:197–208. doi:10.1016/S0012-821X(97)00170-2

    Article  Google Scholar 

  • Fitton JG, Saunders AD, Kempton PD, Hardarson BS (2003) Does depleted mantle form an intrinsic part of the Iceland plume? Geochem Geophys Geosyst 4(3):1032. doi:10.1029/2002GC0000424

    Article  Google Scholar 

  • Gee MAM, Taylor RN, Thirlwall MF, Murton BJ (1998a) Glacioisostacy controls chemical and isotopic characteristics of tholeiites from the Reykjanes Peninsula, SW Iceland. Earth Planet Sci Lett 164:1–5. doi:10.1016/S0012-821X(98)00246-5

    Article  Google Scholar 

  • Gee MAM, Thirlwall MF, Taylor RN, Lowry D, Murton BJ (1998b) Crustal processes: major controls on Reykjanes Peninsula lava chemistry, SW Iceland. J Petrol 39:819–839. doi:10.1093/petrology/39.5.819

    Article  Google Scholar 

  • Gee MAM, Taylor RN, Thirlwall MF, Murton BJ (2000) Axial magma reservoirs located by variation in lava chemistry along Iceland’s mid-ocean ridge. Geology 28:699–702. doi:10.1130/0091-7613(2000)28and<699:AMRLBVand>2.0.CO;2

    Article  Google Scholar 

  • Gudmundsson A (1986) Mechanical aspects of postglacial volcanism and tectonics of the Reykjanes Peninsula, southwest Iceland. J Geophys Res 91:12711–12721. doi:10.1029/JB091iB12p12711

    Article  Google Scholar 

  • Gurenko AA, Chaussidon M (1995) Enriched and depleted primitive melts included in olivines from Icelandic tholeiites: origin by continuous melting of a single mantle column. Geochim Cosmochim Acta 59:2905–2917. doi:10.1016/0016-7037(95)00184-0

    Article  Google Scholar 

  • Gurenko AA, Sobolev AV (2006) Crust-primitive magma interaction beneath neovolcanic rift of Iceland recorded in gabbro xenoliths from Midfell, SW Iceland. Contrib Mineral Petrol 151:495–520. doi:10.1007/s00410-006-0079-2

    Article  Google Scholar 

  • Hanan BB, Schilling J-G (1997) The dynamic evolution of the Iceland mantle plume: the Pb isotope perspective. Earth Planet Sci Lett 151:43–60. doi:10.1016/S0012-821X(97)00105-2

    Article  Google Scholar 

  • Hanan BB, Blichert-Toft J, Kingsley R, Schilling J-G (2000) Depleted Iceland mantle plume geochemical signature: artifact of multicomponent mixing? Geochem Geophys Geosyst 1. doi:10.1029/1999GC000009

  • Hardarson BS, Fitton JG, Ellam RM, Pringle MS (1997) Rift relocation—a geochemical and geochronological investigation of a palaeo-rift in northwest Iceland. Earth Planet Sci Lett 153:181–196. doi:10.1016/S0012-821X(97)00145-3

    Article  Google Scholar 

  • Hart SR (1984) A large-scale isotope anomaly in the southern hemisphere mantle. Nature 309:753–757. doi:10.1038/309753a0

    Article  Google Scholar 

  • Hart SR, Schilling J-G, Powell JL (1973) Basalts from Iceland and along the Reykjanes Ridge: Sr isotope geochemistry. Nat Phys Sci 246:104–107

    Google Scholar 

  • Hémond C, Arndt NT, Lichtenstein U, Hofmann AW (1993) The heterogeneous Iceland mantle plume: Nd–Sr–O isotopes and trace element constraints. J Geophys Res 98:15833–15850. doi:10.1029/93JB01093

    Article  Google Scholar 

  • Hilton DR, Grönvold K, Macpherson CG, Castillo PR (1999) Extreme 3He/4He ratios in northwest Iceland: constraining the common component in mantle plumes. Earth Planet Sci Lett 173:53–60. doi:10.1016/S0012-821X(99)00215-0

    Article  Google Scholar 

  • Holm PM, Wilson JR, Christensen BP, Hansen L, Hansen SL, Hein KM et al (2006) Sampling the Cape Verde mantle plume: evolution of melt compositions on Santo Antão, Cape Verde islands. J Petrol 47:145–189. doi:10.1093/petrology/egi071

    Article  Google Scholar 

  • Jakobsson SP (1974) Volcanic eruptions at Eldeyjarbodi, the Reykjanes Ridge. Natturufraedingurinn 44:22–44 (in Icelandic)

    Google Scholar 

  • Jakobsson SP, Jónsson J, Shido F (1978) Petrology of the western Reykjanes Peninsula, Iceland. J Petrol 19:669–705. doi:10.1093/petrology/19.4.669

    Google Scholar 

  • Jakobsson SP, Johnson GL, Moore JG (2000) A structural and geochemical study of the Western Volcanic Zone, Iceland: preliminary results. InterRidge News 9:27–33

    Google Scholar 

  • Johnson GL, Jakobsson SP (1985) Structure and petrology of the Reykjanes Ridge between 62°55′N and 63°48′N. J Geophys Res 90:10073–10083. doi:10.1029/JB090iB12p10073

    Article  Google Scholar 

  • Jónsson J (1978) Geological map of Reykjanesskagi. Orkustofnun OSJHD 7831, 303 p + map (in Icelandic)

  • Jónsson J (1983) Volcanic eruptions in historical times on the Reykjanes Peninsula, south-west Iceland. Natturufraedingurinn 52:127–139 (in Icelandic)

    Google Scholar 

  • Jull M, McKenzie DP (1996) The effect of deglaciation on mantle melting beneath Iceland. J Geophys Res 101:21815–21828. doi:10.1029/96JB01308

    Article  Google Scholar 

  • Kadko D, Grönvold K, Butterfield D (2007) Application of radium isotopes to determine crustal residence times of hydrothermal fluids from two sites on the Reykjanes Peninsula, Iceland. Geochim Cosmochim Acta 71:6019–6029. doi:10.1016/j.gca.2007.09.018

    Article  Google Scholar 

  • Kamber BS, Collerson KD (2000) Zr/Nb systematics of ocean island basalts reassessed—the case for binary mixing. J Petrol 41:1007–1021. doi:10.1093/petrology/41.7.1007

    Article  Google Scholar 

  • Kelley DF, Barton M (2008) Pressures of crystallization of Icelandic magmas. J Petrol 49:465–492. doi:10.1093/petrology/egm089

    Article  Google Scholar 

  • Kelley KA, Plank T, Ludden J, Staudigel H (2003) Composition of altered oceanic crust at ODP Sites 801 and 1149. Geochem Geophys Geosyst 4(6):8910. doi:10.1029/2002GC000435

    Article  Google Scholar 

  • Kempton PD, Fitton JG, Saunders AD, Nowell GM, Taylor RN, Hardarson BS et al (2000) The Iceland plume in space and time: a Sr–Nd–Pb–Hf study of the North Atlantic rifted margin. Earth Planet Sci Lett 177:255–271. doi:10.1016/S0012-821X(00)00047-9

    Article  Google Scholar 

  • Kent AJR, Clague DA, Honda M, Stolper EM, Hutcheon ID, Norman MD (1999) Widespread assimilation of a seawater-derived component at Loihi seamount, Hawaii. Geochim Cosmochim Acta 63:2749–2761. doi:10.1016/S0016-7037(99)00215-X

    Article  Google Scholar 

  • Kerr AC, Saunders AD, Tarney J, Berry NH, Hards VL (1995) Depleted mantle plume geochemical signature: no paradox for plume theories. Geology 23:843–846. doi:10.1130/0091-7613(1995)023and>0843:DMPGSNand<2.3.CO;2

    Article  Google Scholar 

  • Kokfelt TF, Hoernle K, Hauff F (2003) Upwelling and melting of the Iceland plume from radial variation of U-238–Th-230 disequilibria in postglacial volcanic rocks. Earth Planet Sci Lett 214, 167-186. doi:10.1016/S0012-821X(03)00306-6

    Article  Google Scholar 

  • Kokfelt TF, Hoernle K, Hauff F, Fiebig J, Werner R, Garbe-Schönberg D (2006) Combined trace element and Pb–Nd–Sr–O isotope evidence for recycled oceanic crust (upper and lower) in the Iceland mantle plume. J Petrol 47:1705–1749. doi:10.1093/petrology/egl025

    Article  Google Scholar 

  • Kurz MD, Meyer H, Sigurdsson H (1985) Helium isotopic systematics within the neovolcanic zones of Iceland. Earth Planet Sci Lett 74:291–305. doi:10.1016/S0012-821X(85)80001-7

    Article  Google Scholar 

  • Kystol J, Larsen LM (1999) Analytical procedures in the rock geochemical laboratory of the Geological Survey of Denmark and Greenland. Geol Greenl Surv Bull 184:59–62

    Google Scholar 

  • Larsen LM, Pedersen AK (2000) Processes in high-Mg, high-T magmas: evidence from olivine, chromite and glass in Palaeogene picrites from West Greenland. J Petrol 41:1071–1098. doi:10.1093/petrology/41.7.1071

    Article  Google Scholar 

  • Langmuir CH, Vocke RD, Hanson GN, Hart SR (1978) A general mixing equation with applications to Icelandic basalts. Earth Planet Sci Lett 37:380–392. doi:10.1016/0012-821X(78)90053-5

    Article  Google Scholar 

  • Lundstrom CC, Williams Q, Gill JB (1998) Investigating solid mantle upwelling rates beneath mid-ocean ridges using U-series disequilibria, 1: a global approach. Earth Planet Sci Lett 157:151–165. doi:10.1016/S0012-821X(98)00038-7

    Article  Google Scholar 

  • Maclennan J (2008) Lead isotope variability in olivine-hosted melt inclusions from Iceland. Geochim Cosmochim Acta 72:4159–4176. doi:10.1016/j.gca.2008.05.034

    Article  Google Scholar 

  • Maclennan J, Jull M, McKenzie DP, Slater L, Grönvold K (2002) The link between volcanism and deglaciation in Iceland. Geochem Geophys Geosyst 3(11):1062. doi:10.1029/2000GC000282

    Article  Google Scholar 

  • Maclennan J, McKenzie DP, Hilton F, Grönvold K, Shimizu N (2003a) Geochemical variability in a single flow from northern Iceland. J Geophys Res 108(B1), 2007. doi:10.1029/2000JB000142

  • Maclennan J, McKenzie DP, Grönvold K, Shimizu N, Eiler JM, Kitchen N (2003b) Melt mixing and crystallisation under Theistareykir, northeast Iceland. Geochem Geophys Geosyst 4(11):8624. doi:10.1029/2003GC000558

    Article  Google Scholar 

  • Martin E, Sigmarsson O (2005) Trondhjemitic and granitic melts formed by fractional crystallization of an olivine tholeiite from Reykjanes Peninsula, Iceland. Geol Mag 142:651–658. doi:10.1017/S0016756805001160

    Article  Google Scholar 

  • Mattey DP, Macpherson C (1993) High-precision oxygen isotope microanalysis of ferromagnesian minerals by laser fluorination. Chem Geol 105:305–318. doi:10.1016/0009-2541(93)90133-4

    Article  Google Scholar 

  • Mattey DP, Lowry D, Macpherson C (1994) Oxygen isotope composition of mantle peridotite. Earth Planet Sci Lett 128:231–241. doi:10.1016/0012-821X(94)90147-3

    Article  Google Scholar 

  • Momme P, Oskarsson N, Keys RR (2003) Platinum-group elements in the Icelandic rift system: melting processes and mantle sources beneath Iceland. Chem Geol 196:209–234. doi:10.1016/S0009-2541(02)00414-X

    Article  Google Scholar 

  • Muehlenbachs K, Anderson AT, Sigvaldason GE (1974) Low-18O basalts from Iceland. Geochim Cosmochim Acta 38:577–588. doi:10.1016/0016-7037(74)90042-8

    Article  Google Scholar 

  • Murray RW, Miller DJ, Kryc KA (2000). Analysis of major and trace elements in rocks, sediments, and interstitial waters by inductively coupled plasma atomic emission spectrometry (ICP-AES). ODP Technology Note, 29 (online). Available from World Wide Web: <http://www.odp.tamu.edu/publications/tnotes/th29/index.htm>

  • Murton BJ, Taylor RN, Thirlwall MF (2002) Plume-ridge interaction: a geochemical perspective from the Reykjanes Ridge. J Petrol 43:1987–2012. doi:10.1093/petrology/43.11.1987

    Article  Google Scholar 

  • Nielsen SG, Rehkämper M, Brandon AD, Norman MD, Turner SP, O’Reilly SY (2007) Thallium isotopes in Iceland and Azores lavas—implications for the role of altered crust and mantle geochemistry. Earth Planet Sci Lett 264:332–345. doi:10.1016/j.epsl.2007.10.008

    Article  Google Scholar 

  • Nimis P, Ulmer P (1998) Clinopyroxene geobarometry of magmatic rocks, part 1: an expanded structural geobarometer for anhydrous and hydrous, basic and ultrabasic systems. Contrib Mineral Petrol 133:122–135. doi:10.1007/s004100050442

    Article  Google Scholar 

  • Norrish K, Chappell BW (1967) X-ray fluorescence spectography. In: Zussman J (ed) Physical methods in determinative mineralogy. Academic Press, New York, pp 161–214

    Google Scholar 

  • Oskarsson N, Helgason Ö, Steinthorsson S (1994) Oxidation state of iron in mantle-derived magmas of the Icelandic rift zone. Hyperfine Interact 91:733–737. doi:10.1007/BF02064599

    Article  Google Scholar 

  • Peate DW, Hawkesworth CJ, van Calsteren PW, Taylor RN, Murton BJ (2001) 238U–230Th constraints on mantle upwelling and plume–ridge interaction along the Reykjanes Ridge. Earth Planet Sci Lett 187:259–272. doi:10.1016/S0012-821X(01)00266-7

    Article  Google Scholar 

  • Peate DW, Baker JA, Blichert-Toft J, Hilton DR, Storey M, Kent AJR et al (2003) The Prinsen af Wales Bjerge Formation lavas, East Greenland: the transition from tholeiitic to alkalic magmatism during Palaeogene continental break-up. J Petrol 44:279–304. doi:10.1093/petrology/44.2.279

    Article  Google Scholar 

  • Putirka KD (1997) Magma transport at Hawaii: inferences based on igneous thermobarometry. Geology 25:69–72. doi:10.1130/0091-7613(1997)025and>0069:MTAHIBand<2.3.CO;2

    Article  Google Scholar 

  • Putirka KD (2005) Mantle potential temperature at Hawaii, Iceland and the mid-ocean ridge system as inferred from olivine phenocrysts: evidence for thermally diverse mantle plumes. Geochem Geophys Geosyst 6(5):Q05L08. doi:10.1029/2005GC000915

  • Putirka K, Johnson M, Kinzler R, Longhi J, Walker D (1996) Thermobarometry of mafic igneous rocks based in clinopyroxene-liquid equilibria, 0–30 kbar. Contrib Mineral Petrol 123:92–108. doi:10.1007/s004100050145

    Article  Google Scholar 

  • Reiners PW (2002) Temporal-compositional trends in intraplate basalt eruptions: implications for mantle heterogeneity and melting processes. Geochem Geophys Geosyst 3(2). doi:10.1029/2001GC000250

  • Révillon S, Arndt NT, Hallot E, Kerr AC, Tarney J (1999) Petrogenesis of picrites from the Caribbean Plateau and the North Atlantic magmatic province. Lithos 49:1–21. doi:10.1016/S0024-4937(99)00038-9

    Article  Google Scholar 

  • Rogers NW, Thomas LE, Macdonald R, Hawkesworth CJ, Mokadem F (2006) 238U–230Th disequilibrium in recent basalts and dynamic melting beneath the Kenya rift. Chem Geol 234:148–168. doi:10.1016/j.chemgeo.2006.05.002

    Article  Google Scholar 

  • Saal AE, Hart SR, Shimizu N, Hauri EH, Layne GD (1998) Pb isotopic variability in melt inclusions from oceanic island basalts, Polynesia. Science 282:278–281. doi:10.1126/science.282.5393.1481

    Article  Google Scholar 

  • Schilling J-G, Kingsley R, Fontignie D, Poreda R, Xue S (1999) Dispersion of the Jan Mayen and Iceland mantle plumes in the Arctic: a He–Pb–Nd–Sr isotope tracer study of basalts from the Kolbeinsey, Mohns and Knipovich Ridges. J Geophys Res 104:10543–10569. doi:10.1029/1999JB900057

    Article  Google Scholar 

  • Sigmarsson O, Condomines M, Grönvold K, Thordarson T (1991) Extreme magma homogeneity in the 1784–84 Lakagigar eruption—origin of a large volume of evolved basalt in Iceland. Geophys Res Lett 18:2229–2232. doi:10.1029/91GL02328

    Article  Google Scholar 

  • Sigmarsson O, Condomines M, Fourcade F (1992) Mantle and crustal contribution in the genesis of Recent basalts from off-rift zones in Iceland: constraints from Th, Sr and O isotopes. Earth Planet Sci Lett 110:149–162. doi:10.1016/0012-821X(92)90045-W

    Article  Google Scholar 

  • Sims KWW, Goldstein SJ, Blichert-Toft J, Perfitt MR, Kelemen P, Fornari DJ et al (2002) Chemical and isotopic constraints on the generation and transport of magma beneath the East Pacific Rise. Geochim Cosmochim Acta 66:3481–3504. doi:10.1016/S0016-7037(02)00909-2

    Article  Google Scholar 

  • Sinton J, Grönvold K, Saemundsson K (2005) Postglacial eruptive history of the Western Volcanic Zone, Iceland. Geochem Geophys Geosyst 6(12):Q12009. doi:10.1029/2005GC001021

  • Skovgaard AC, Storey M, Baker JA, Blusztajn J, Hart SR (2001) Osmium-oxygen isotopic evidence for a recycled and strongly depleted component in the Iceland mantle plume. Earth Planet Sci Lett 194:259–275. doi:10.1016/S0012-821X(01)00549-0

    Article  Google Scholar 

  • Spiegelman M, Kelemen PB (2003) Extreme chemical variability as a consequence of channelized melt transport. Geochem Geophys Geosyst 4(7):1055–1522. doi:10.1029/2002GC000336

    Article  Google Scholar 

  • Stecher O, Carlson RW, Shirey SB (1986) Sr and Nd isotopes and the petrological evolution of post-glacial lavas from the Reykjanes Peninsula, Iceland. Eos Trans AGU 67:413

    Google Scholar 

  • Stecher O, Carlson RW, Gunnarsson B (1999) Torfajökull: a radiogenic end-member of the Iceland Pb-isotopic array. Earth Planet Sci Lett 165:117–127. doi:10.1016/S0012-821X(98)00256-8

    Article  Google Scholar 

  • Stracke A, Zindler A, Salters VJM, McKenzie D, Blichert-Toft J, Albarède F et al (2003) Theistareykir revisited. Geochem Geophys Geosyst 4(2):8507. doi:10.1029/2001GC000201

    Article  Google Scholar 

  • Sun S-S, Jahn B (1975) Lead and strontium isotopes in post-glacial basalts from Iceland. Nature 255:527–530. doi:10.1038/255527a0

    Article  Google Scholar 

  • Thirlwall MF, Gee MAM, Taylor RN, Murton BJ (2004) Mantle components in Iceland and adjacent ridges investigated using double-spike Pb isotope ratios. Geochim Cosmochim Acta 68:361–386. doi:10.1016/S0016-7037(03)00424-1

    Article  Google Scholar 

  • Thirlwall MF, Gee MAM, Lowry D, Mattey DP, Murton BJ, Taylor RN (2006) Low δ18O in the Icelandic mantle and its origins: evidence from Reykjanes Ridge and Icelandic lavas. Geochim Cosmochim Acta 70:993–1019. doi:10.1016/j.gca.2005.09.008

    Article  Google Scholar 

  • Waight TE, Baker JA, Peate DW (2002) Sr isotope measurement by double focusing MC–ICP-MS: techniques, observations and pitfalls. Int J Mass Spectrom 221:229–244. doi:10.1016/S1387-3806(02)01016-3

    Article  Google Scholar 

  • Weir NRW, White RS, Brandsdottir B, Einarsson P, Shimamura H, Shiobara H, RISE fieldwork team (2001) Crustal structure of the northern Reykjanes Ridge and Reykjanes Peninsula, southwest Iceland. J Geophys Res 106:6347–6368. doi:10.1029/2000JB900358

    Article  Google Scholar 

  • Wood DA (1978) Major and trace element variations in the Tertiary lavas of eastern Iceland and their significance with respect to the Iceland geochemical anomaly. J Petrol 19:393–436. doi:10.1093/petrology/19.3.393

    Google Scholar 

  • Wood DA (1981) Partial melting models for the petrogenesis of Reykjanes Peninsula basalts, Iceland: implications for the use of trace elements and strontium and neodymium isotope ratios to record inhomogeneities in the upper mantle. Earth Planet Sci Lett 52:183–190. doi:10.1016/0012-821X(81)90219-3

    Article  Google Scholar 

  • Workman RK, Hart SR, Jackson M, Regelous M, Farley KA, Blusztajn J et al (2004) Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM-2) end-member: evidence from the Samoan volcanic chain. Geochem Geophys Geosyst 5(4):Q04008. doi:10.1029/2003GC0000623

  • Zindler A, Hart SR, Frey FA, Jakobsson SP (1979) Nd and Sr isotope ratios and rare earth element abundances in Reykjanes Peninsula basalts: evidence for mantle heterogeneity beneath Iceland. Earth Planet Sci Lett 45:249–262. doi:10.1016/0012-821X(79)90127-4

    Article  Google Scholar 

Download references

Acknowledgments

We thank John Bailey, Jørn Kystol, Nick Rogers, and Terry Plank for providing the XRF and ICP-MS data, and Kresten Breddam and Ole Stecher, for kindly providing some of the samples and for numerous discussions on Iceland geology. This work was funded primarily by the Danish National Research Foundation through a grant to the now defunct Danish Lithosphere Centre, and the oxygen isotope analyses were funded from start-up funds to DWP from the University of Iowa. DWP would also like to thank the University of Iowa for support during manuscript preparation, initially through an Old Gold Summer Fellowship and subsequently through a Scholar appointment at the Obermann Center for Advanced Studies. John Maclennan and an anonymous reviewer are thanked for their careful and thorough journal reviews which helped us to clarify several aspects of the presentation of our ideas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Peate.

Additional information

Communicated by J. Blundy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

410_2008_339_MOESM1_ESM.xls

Table A1a-c Mineral compositions of phenocrysts and glass from selected samples. Mineral analyses on grain mounts by electron microprobe in the Geological Institute, Copenhagen University, following the methods in Larsen & Pedersen (2000) (XLS 40 kb)

Table A1 (XLS 33 kb)

Table A1 (XLS 26 kb)

410_2008_339_MOESM4_ESM.xls

ICP-MS trace element analyses of selected samples. All samples and calibration standards were digested in the clean laboratory at the University of Iowa. Analyses at Boston University followed the methods detailed in Kelley et al. (2003). Analyses at the Open University followed the methods detailed in Rogers et al. (2006) (XLS 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peate, D.W., Baker, J.A., Jakobsson, S.P. et al. Historic magmatism on the Reykjanes Peninsula, Iceland: a snap-shot of melt generation at a ridge segment. Contrib Mineral Petrol 157, 359–382 (2009). https://doi.org/10.1007/s00410-008-0339-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-008-0339-4

Keywords

Navigation