Skip to main content
Log in

Do extrusion ages reflect magma generation processes at depth? An example from the Neogene Volcanic Province of SE Spain

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The high-K calc-alkaline volcanic rocks along the Neogene Volcanic Province of SE Spain represent crustal anatectic melts mixed with mantle components during the opening of the Alborán Sea. Partially melted metapelitic enclaves, along with the geochemical signature, provide evidence of their crustal source. U–Pb SHRIMP geochronology on monazite and zircon from enclaves and their hosting lavas in the localities of El Hoyazo, Mazarrón and Mar Menor reveals variable delays between the melting at depth and the eruption of the volcanics. These data indicate that: (1) the most important event of anatexis in the Neogene spanned at least the 3 m.y. interval between 12 and 9 Ma; (2) there is no trend in age of crustal melting; and (3) the delay between magma generation and extrusion varies from more than 3 m.y. at El Hoyazo to ~0.5 m.y. and possibly 2.5 m.y. at Mar Menor, with no significant delay measurable at Mazarrón. The variable time delay between anatexis and lava extrusion indicates that radiometric ages of volcanics may provide misleading information on the timing of magma genesis occurring at depth. This highlights the pitfall of basing detailed geodynamic models on volcanic extrusion ages alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Figs. 2–7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acosta-Vigil A, Cesare B, London D, Morgan GBVI (2007) Microstructures and composition of melt inclusions in a crustal anatectic environment: the metapelitic enclaves within El Hoyazo dacites, SE Spain. Chem Geol 237:450–465. doi:10.1016/j.chemgeo.2006.07.014

    Article  Google Scholar 

  • Aleinikoff JN, Schenck WS, Plank MO, Srogi L, Fanning CM, Kamo SL, Howell B (2007) Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington Complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite. Geol Soc Am Bull 118:39–64. doi:10.1130/B25659.1

    Article  Google Scholar 

  • Alvarez-Valero AM, Kriegsman LM (2007) Crustal thinning and mafic underplating beneath the Neogene Volcanic Province (Betic Cordillera, SE Spain): evidence from crustal xenoliths. Terra Nova 19:266–271. doi:10.1111/j.1365-3121.2007.00745.x

    Article  Google Scholar 

  • Álvarez-Valero AM, Kriegsman LM (2008) Partial crustal melting beneath the Betic Cordillera (SE Spain): the case study of Mar Menor volcanic suite. Lithos 101:379–396

    Article  Google Scholar 

  • Alvarez-Valero AM, Cesare B, Kriegsman LM (2005) Formation of elliptical garnets in a metapelitic enclave by meltassisted dissolution and reprecipitation. J Metamorph Geol 23:65–74

    Article  Google Scholar 

  • Alvarez-Valero AM, Cesare B, Kriegsman LM (2007) Formation of spinel-cordierite-feldspar-glass coronas after garnet in metapelitic xenoliths: reaction modelling and geodynamic implications. J Metamorph Geol 25:305–320. doi:10.1111/j.1525-1314.2007.00690.x

    Article  Google Scholar 

  • Barbero L, Villaseca C (1992) The Layos granite, Hercynian Complex of Toledo (Spain): an example of parauthoctonous restite-rich granite in a granulite area. Trans R Soc Edinb Earth Sci 83:127–138

    Google Scholar 

  • Barbero L, Villaseca C, Rogers G, Brown PE (1995) Geochemical and isotopic disequilibrium in crustal melting: an insight from the anatectic granitoids from Toledo, Spain. J Geophys Res 100:15745–15765. doi:10.1029/95JB00036

    Article  Google Scholar 

  • Bellon H, Bordet P, Montenat C (1983) Chronologie du magmatisme néogène des Cordillères bétiques (Espagne méridionale). Bull Soc Geol Fr 25:205–217

    Google Scholar 

  • Benito R, Lopez-Ruiz J, Cebriá JM, Hertogen J, Doblas M, Oyarzun R, Demaiffe D (1999) Sr and O isotope constraints on source and crustal contamination in the high-K calc-alkaline and shoshonitic neogene volcanic rocks of SE Spain. Lithos 46:773–802. doi:10.1016/S0024-4937(99)00003-1

    Article  Google Scholar 

  • Best MG, Christiansen EH (1991) Limited extension during peak Tertiary volcanism, Great Basin of Nevada and Utah. J Geophys Res 96:13509–13528

    Article  Google Scholar 

  • Black LP, Kamo SL, Allen CM, Aleinikoff JM, Davis DW, Korsch RJ, Foudoulis C (2003) TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chem Geol 200:155–170

    Article  Google Scholar 

  • Cesare B (2000) Incongruent melting of biotite to spinel in a quartz-free restite at El Joyazo (SE Spain): textures and reaction characterization. Contrib Mineral Petrol 139:273–284. doi:10.1007/s004100000137

    Article  Google Scholar 

  • Cesare B (2008) Crustal melting: working with enclaves. In: Sawyer EW, Brown M (eds) Working with migmatites. Mineral Assoc Canada Short Course, vol 38, pp 37–55

  • Cesare B, Gomez-Pugnaire MT (2001) Crustal melting in the Alborán domain: constraints from the xenoliths of the Neogene Volcanic Province. Phys Chem Earth 26:255–260. doi:10.1016/S1464-1895(01)00053-9

    Article  Google Scholar 

  • Cesare B, Maineri C (1999) Fluid-present anatexis of metapelites at El Joyazo (SE Spain): constraints from raman spectroscopy of graphite. Contrib Mineral Petrol 135:41–52. doi:10.1007/s004100050496

    Article  Google Scholar 

  • Cesare B, Salvioli Mariani E, Venturelli G (1997) Crustal anatexis and melt extraction in the restitic xenoliths at El Hoyazo (SE Spain). Mineral Mag 61:15–27. doi:10.1180/minmag.1997.061.404.03

    Article  Google Scholar 

  • Cesare B, Gomez-Pugnaire MT, Sanchez-Navas A, Grobety B (2002) Andalusite—sillimanite replacement (Mazarrón—SE Spain): microstructural and TEM study. Am Mineral 87:433–444

    Google Scholar 

  • Cesare B, Cruciani G, Russo U (2003a) Hydrogen deficiency in Ti-rich biotite from anatectic metapelites (El Joyazo—SE Spain): crystal-chemical aspects and implications for high-temperature petrogenesis. Am Mineral 88:583–595

    Google Scholar 

  • Cesare B, Gomez-Pugnaire MT, Rubatto D (2003b) Residence time of S-type anatectic magmas beneath the Neogene Volcanic Province of SE Spain: a zircon and monazite SHRIMP study. Contrib Mineral Petrol 146:28–43. doi:10.1007/s00410-003-0490-x

    Article  Google Scholar 

  • Cesare B, Marchesi C, Hermann J, Gomez-Pugnaire MT (2003c) Primary melt inclusions in andalusite from anatectic graphitic metapelites: Implications for the position of the Al2SiO5 triple point. Geology 31:573–576. doi :10.1130/0091-7613(2003)0310573:PMIIAF2.0.CO;2

    Article  Google Scholar 

  • Cesare B, Meli S, Nodari L, Russo U (2005) Fe3+ reduction during biotite melting in graphitic metapelites: another origin of CO2 in granulites. Contrib Mineral Petrol 149:129–140. doi:10.1007/s00410-004-0646-3

    Article  Google Scholar 

  • Cesare B, Maineri C, Baron Toaldo A, Pedron D, Acosta-Vigil A (2007) Immiscibility between carbonic fluids and granitic melts during crustal anatexis: a fluid and melt inclusion study in the enclaves of the Neogene Volcanic Province of SE Spain. Chem Geol 237:433–449. doi:10.1016/j.chemgeo.2006.07.013

    Article  Google Scholar 

  • Christiansen RL, Foulger GR, Evans JR (2002) Upper-mantle origin of the Yellowstone hotspot. Geol Soc Am Bull 114:245–1256. doi :10.1130/0016-7606(2002)1141245:UMOOTY2.0.CO;2

    Article  Google Scholar 

  • Clemens JD (2003) S-type granitic magmas—petrogenetic issues, models and evidence. Earth Sci Rev 61:1–18. doi:10.1016/S0012-8252(02)00107-1

    Article  Google Scholar 

  • Clemens JD, Droop GTR (1998) Fluids, P-T paths and the fates of anatectic melts in the Earth’s Crust. Lithos 44:21–36. doi:10.1016/S0024-4937(98)00020-6

    Article  Google Scholar 

  • Comas MC, Zahn R, Klaus A, Aubourg C, Bernasconi SM, Belanger PE, Cornell W, de Kaenel EP, de Larouzière FD, Doglioni C, Doose H, Fukusawa H, Hobart M, Iaccarino SM, Ippach P, Marsaglia K, Meyers P, Murat A, O'Sullivan GM, Platt JP, Prasad M, Siesser WG, Skilbeck CG, Soto JI, Tandon K, Torii M, Tribble JS, Wilkens RH (1996) In: Proceedings of the ocean drilling program, Initial Reports 161, Ocean Drilling Program, College Station, TX

  • Comas MC, Platt JP, Soto JI, Watts AB (1999) The origin and tectonic history of the Alborán Basin: insights from Leg 161. In: Zahn R, Comas MC, Klaus A (eds) Proceedings of the ocean drilling program, scientific results, vol 161, pp 555–579

  • Davies GR, Halliday AN (1998) Development of the Long Valley rhyolitic magma system: strontium and neodynium isotope evidence from glasses and individual phenocrysts. Geochim Cosmochim Acta 62:3561–3574. doi:10.1016/S0016-7037(98)00247-6

    Article  Google Scholar 

  • De Larouziere FD, Bolze J, Bordet P, Hernandez J, Montenat C, Ott d’Estevou P (1988) The betic segment of the lithospheric Trans-Alborán shear zone during the late Miocene. Tectonophysics 152:41–52. doi:10.1016/0040-1951(88)90028-5

    Article  Google Scholar 

  • De Larouziere FM, Ott d’Estevou P (1990) Les bassins d’Hinojar et Mazarrón. In: Montenat C (ed) Les bassins néogenes du Domaine Bétique Oriental (Espagne). Documents et Travaux IGAL, vol 12–13, pp 207–220

  • Duggen S, Hoernle K, van den Bogaard P, Harris C (2004) Magmatic evolution of the Alborán region: the role of subduction in forming the western Mediterranean and causing the Messinian Salinity Crisis. Earth Planet Sci Lett 218:91–108. doi:10.1016/S0012-821X(03)00632-0

    Article  Google Scholar 

  • Duggen S, Hoernle K, van den Bogaard P, Garbe-Schönberg D (2005) Post-collisional transition from subduction- to intraplate-type magmatism in the westernmost Mediterranean: evidence for continental-edge delamination of subcontinental lithosphere. J Petrol 46:1155–1201. doi:10.1093/petrology/egi013

    Article  Google Scholar 

  • Duggen S, Hoernle K, Klügel A, Geldmacher J, Thirlwall M, Hauff F, Lowry D, Oates N (2008) Geochemical zonation of teh Miocene Alborán Basin volcanism (westernmost Mediterranean) geodynamic implications. Contrib Mineral Petrol (in press)

  • Fernández-Soler JM (1996) El volcanismo calco-alcalino en el parque natural de Cabo de Gata-Níjar (Almería). Estudio Volcanológico y Petrológico. Soc Almeriense Hist Natural. Monografias Medio Nat 2:1–295

    Google Scholar 

  • Fernández-Soler JM, Acosta-Vigil A, Gómez-Pugnaire MT, Comas MC (2007) Magma mixing in El Hoyazo volcanics, Betic Cordilleras (SE Spain). Geophys Res Abstr 9:04202

    Google Scholar 

  • Ferri F, Burlini L, Cesare B, Sassi R (2007) Seismic properties of lower crustal xenoliths from El Hoyazo (SE Spain): experimental evidence up to partial melting. Earth Planet Sci Lett 253:239–253. doi:10.1016/j.epsl.2006.10.027

    Article  Google Scholar 

  • García-Dueñas V, Balaná JC, Martínez-Martínez JM (1992) Miocene extensional detachments in the outcropping basement of the northern Alborán basin (Betics) and their tectonic implications. Geo-Mar Lett 12:88–95. doi:10.1007/BF02084917

    Article  Google Scholar 

  • Gill RCO, Aparicio A, El Azouzzi M, Hernández J, Thirlwall MF, Bourgois J, Marriner GF (2004) Depleted arc volcanism in the Alborán Sea and shoshonitic volcanism in Morocco: geochemical and isotopic constraints on Neogene tectonic processes. Lithos 78:363–388. doi:10.1016/j.lithos.2004.07.002

    Article  Google Scholar 

  • Gracia E, Pallas R, Soto JI, Comas M, Moreno X, Masana E, Santanach P, Diez S, Garcia M, Danobeitia J, Scientific Party HITS (2006) Active faulting offshore SE Spain (Alboran Sea): implications for earthquake hazard assessment in the Southern Iberian Margin. Earth Planet Sci Lett 241:734–749. doi:10.1016/j.epsl.2005.11.009

    Article  Google Scholar 

  • Gueguen E, Doglioni C, Fernandez M (1998) On the post-25 Ma geodynamic evolution of the western Mediterranean. Tectonophysics 298:259–269

    Article  Google Scholar 

  • Heath E, Turner SP, Macdonald R, Hawkesworth CJ, van Calsteren P (1998) Long magma residence times at an island arc volcano (Soufriere, St. Vincent) in the Lesser Antilles: evidence from 238U–230Th isochron dating. Earth Planet Sci Lett 160:4–63. doi:10.1016/S0012-821X(98)00084-3

    Article  Google Scholar 

  • Holness MB (2008) Decoding migmatite microstructures. In: Sawyer EW, Brown M (eds) Working with migmatites. Mineral Assoc Canada Short Course, vol 38, pp 57–76

  • Jordan BT, Grunder AL, Duncan RA, Deino AL (2004) Geochronology of age-progressive volcanism of the Oregon High Lava Plains: implications for the plume interpretation of Yellowstone. J Geophys Res 109:B10202. doi:10.1029/2003JB002776

    Article  Google Scholar 

  • Kelsey DE, Clark C, Hand M (2008) Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: examples using model metapelitic and metapsammitic granulites. J Metamorph Geol 26:199–212. doi:10.1111/j.1525-1314.2007.00757.x

    Article  Google Scholar 

  • Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279

    Google Scholar 

  • López Ruiz J, Rodríguez Badiola E (1980) La región volcánica neógena del sureste de España. Est Geol 36:5–63

    Google Scholar 

  • Ludwig KR (2003) Isoplot/Ex version 3.0. A geochronological toolkit for Microsoft Excel. 1a: Berkeley Geochronological Centre Spec Pub, Berkeley

    Google Scholar 

  • Pallister JS, Hoblitt RP, Crandell DR, Mullineaux DR (1992) Mount St. Helens a decade after the 1980 eruptions: magmatic models, chemical cycles, and revised hazards assessment. Bull Volcanol 54:126–146. doi:10.1007/BF00278003

    Article  Google Scholar 

  • Perini G, Cesare B, Gómez-Pugnaire MT Ghezzi, Tommasini S (2008) Armouring effect in decoupling Sr-Nd isotopes during disequilibrium crustal melting: the case study of frozen migmatites from El Hoyazo and Mazarrón, SE Spain. Eur J Mineral (in press)

  • Petford N, Cruden AR, McCaffrey KJW, Vigneresse JL (2000) Granite magma formation, transport and emplacement in the Earth’s crust. Nature 408:669–673. doi:10.1038/35047000

    Article  Google Scholar 

  • Platt JP, Whitehouse MJ, Kelley SP, Carter A, Hollick L (2003) Simultaneous extensional exhumation across the Alborán basin: Implications for the causes of late-orogenic extension. Geology 31:251–254. doi :10.1130/0091-7613(2003)0310251:SEEATA2.0.CO;2

    Article  Google Scholar 

  • Reid MR, Coath CD, Harrison TM, McKeegan KD (1997) Prolonged residence times for the youngest rhyolites associated with Long Valley Caldera: 230 Th-238 U ion microprobe dating of young zircons. Earth Planet Sci Lett 150:327–339. doi:10.1016/S0012-821X(97)00077-0

    Article  Google Scholar 

  • Rubatto D, Hermann J, Buick IS (2006) Temperature and bulk composition control on the growth of monazite and zircon during low-pressure anatexis (Mount Stafford, central Australia). J Petrol 47:1973–1996. doi:10.1093/petrology/egl033

    Article  Google Scholar 

  • Sharp WD, Clague DA (2006) 50-Ma initiation of Hawaiian-Emperor Bend records major change in Pacific Plate motion. Science 313:1281–1284. doi:10.1126/science.1128489

    Article  Google Scholar 

  • Simon JI, Renne PR, Mundil R (2008) Implications of pre-eruptive magmatic histories of zircons for U–Pb geochronology of silicic extrusions. Earth Planet Sci Lett 266:182–194. doi:10.1016/j.epsl.2007.11.014

    Article  Google Scholar 

  • Sobolev VS, Kostyuk VP (1975) Magmatic crystallization based on a study of melt inclusions. Fluid Incl Res 9:182–253 (translated from original pubblication in Russian)

    Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead evolution by a two-stage model. Earth Planet Sci Lett 26:207–221. doi:10.1016/0012-821X(75)90088-6

    Article  Google Scholar 

  • Tommasini S, Davies GR (1997) Isotope disequilibrium during anatexis: a case study of contact melting, Sierra Nevada, CA. Earth Planet Sci Lett 148:273–285. doi:10.1016/S0012-821X(97)00031-9

    Article  Google Scholar 

  • Torne M, Fernández M, Comas MC, Soto JI (2000) Lithospheric structure beneath the Alborán Basin: results from 3D Gravity modeling and tectonic relevance. J Geophys Res 105:3209–3228. doi:10.1029/1999JB900281

    Article  Google Scholar 

  • Turner SP, Platt JP, George RMM, Kelley SP, Pearson DG, Nowell GM (1999) Magmatism associated with orogenic collapse of the Betic-Alborán Domain, SE Spain. J Petrol 40:1011–1036. doi:10.1093/petrology/40.6.1011

    Article  Google Scholar 

  • Venturelli G, Capedri S, Di Battistini G, Crawford A, Kogarko LN, Celestini S (1984) The ultrapotassic rocks from southeastern Spain. Lithos 17:37–54. doi:10.1016/0024-4937(84)90005-7

    Article  Google Scholar 

  • Vernon RH (2007) Problems in identifying restite in S-type granites of southeastern Australia, with speculations on sources of magma and enclaves. Can Mineral 45:147–178. doi:10.2113/gscanmin.45.1.147

    Article  Google Scholar 

  • Williams IS (1998) U-Th–Pb geochronology by ion microprobe. In: McKibben MA, Shanks WC III, Ridley WI (eds) Applications of microanalytical techniques to understanding mineralizing processes. Reviews in economic geology, pp 1–35

  • Zeck HP (1970) An erupted migmatite from Cerro del Hoyazo, SE Spain. Contrib Mineral Petrol 26:225–246. doi:10.1007/BF00373202

    Article  Google Scholar 

  • Zeck HP (1992) Restite-melt and mafic-felsic magma mingling in an S-type dacite, Cerro del Hoyazo, southeastern Spain. Trans R Soc Edinb Earth Sci 83:139–144

    Google Scholar 

  • Zeck HP, Williams IS (2002) Inherited and magmatic zircon from Neogene Hoyazo cordierite dacite, SE Spain–Anatectic source rock provenance and magmatic evolution. J Petrol 43:1089–1104. doi:10.1093/petrology/43.6.1089

    Article  Google Scholar 

  • Zeck HP, Kristensen AB, Williams IS (1998) Post-collisional volcanism in a sinking slab setting—crustal anatectic origin of pyroxene-andesite magma, Caldear Volcanic Group, Neogene Alborán volcanic Province, southeastern Spain. Lithos 45:499–522. doi:10.1016/S0024-4937(98)00047-4

    Article  Google Scholar 

  • Zeck HP, Maluski H, Kristensen AB (2000) Revised geochronology of the Neogene calc-alkaline volcanic suite in Sierra de Gata, Alborán volcanic province, SE Spain. J Geol Soc 157:75–81

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank Antonio Acosta-Vigil, I. Buick, J.M. Fernandez-Soler and J. Hermann for discussion, A. Patiño-Douce and B. Clarke for reviewing an earlier version of the manuscript, and two anonymous reviewers for their helpful comments. The Electron Microscopy Unit at ANU is thanked for access to the SEM facilities. We acknowledge the financial support of Ministero dell’Università e della Ricerca (PRIN 2005-047810) and Consiglio Nazionale delle Ricerche (Euromargins ESF Eurocore) to BC, of CGL2006-04440 (MEC) and RNM-0145 (Junta de Andalucía) to MTG-P, and of the Australian Research Council to DR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernardo Cesare.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 2 SHRIMP U–Pb analyses of zircon and monazite (XLS 38.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cesare, B., Rubatto, D. & Gómez-Pugnaire, M.T. Do extrusion ages reflect magma generation processes at depth? An example from the Neogene Volcanic Province of SE Spain. Contrib Mineral Petrol 157, 267–279 (2009). https://doi.org/10.1007/s00410-008-0333-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-008-0333-x

Keywords

Navigation