Advertisement

The origin of hydrous, high-δ18O voluminous volcanism: diverse oxygen isotope values and high magmatic water contents within the volcanic record of Klyuchevskoy volcano, Kamchatka, Russia

  • Sara Auer
  • Ilya Bindeman
  • Paul Wallace
  • Vera Ponomareva
  • Maxim Portnyagin
Original Paper

Abstract

Klyuchevskoy volcano, in Kamchatka’s subduction zone, is one of the most active arc volcanoes in the world and contains some of the highest δ18O values for olivines and basalts. We present an oxygen isotope and melt inclusion study of olivine phenocrysts in conjunction with major and trace element analyses of 14C- and tephrochronologically-dated tephra layers and lavas spanning the eruptive history of Klyuchevskoy. Whole-rock and groundmass analyses of tephra layers and lava samples demonstrate that both high-Mg (7–12.5 wt% MgO) and high-Al (17–19 wt% Al2O3, 3–6.5 wt% MgO) basalt and basaltic andesite erupted coevally from the central vent and flank cones. Individual and bulk olivine δ18O range from normal MORB values of 5.1‰ to values as high as 7.6‰. Likewise, tephra and lava matrix glass have high-δ18O values of 5.8–8.1‰. High-Al basalts dominate volumetrically in Klyuchevskoy’s volcanic record and are mostly high in δ18O. High-δ18O olivines and more normal-δ18O olivines occur in both high-Mg and high-Al samples. Most olivines in either high-Al or high-Mg basalts are not in oxygen isotopic equilibrium with their host glasses, and Δ18Oolivine–glass values are out of equilibrium by up to 1.5‰. Olivines are also out of Fe–Mg equilibrium with the host glasses, but to a lesser extent. Water concentrations in olivine-hosted melt inclusions from five tephra samples range from 0.4 to 7.1 wt%. Melt inclusion CO2 concentrations vary from below detection (<50 ppm) to 1,900 ppm. These values indicate depths of crystallization up to ~17 km (5 kbar). The variable H2O and CO2 concentrations likely reflect crystallization of olivine and entrapment of inclusions in ascending and degassing magma. Oxygen isotope and Fe–Mg disequilibria together with melt inclusion data indicate that olivine was mixed and recycled between high-Al and high-Mg basaltic melts and cumulates, and Fe–Mg and δ18O re-equilibration processes were incomplete. Major and trace elements in the variably high-δ18O olivines suggest a peridotite source for the parental magmas. Voluminous, highest in the world with respect to δ18O, and hydrous basic volcanism in Klyuchevskoy and other Central Kamchatka depression volcanoes is explained by a model in which the ascending primitive melts that resulted from the hydrous melt fluxing of mantle wedge peridotite, interacted with the shallow high-δ18O lithospheric mantle that had been extensively hydrated during earlier times when it was part of the Kamchatka forearc. Following accretion of the Eastern Peninsula terrains several million years ago, a trench jump eastward caused the old forearc mantle to be beneath the presently active arc. Variable interaction of ascending flux-melting-derived melts with this older, high-δ18O lithospheric mantle has produced mafic parental magmas with a spectrum of δ18O values. Differentiation of the higher δ18O parental magmas has created the volumetrically dominant high-Al basalt series. Both basalt types incessantly rise and mix between themselves and with variable in δ18O cumulates within dynamic Klyuchevskoy magma plumbing system, causing biannual eruptions and heterogeneous magma products.

Keywords

Oxygen isotopes Olivine Melt inclusions Hydrous melting Ion microprobe 

Notes

Acknowledgments

This research represents the M.S. thesis by the lead author. It was supported by NSF grants EAR0537872 (Bindeman) and EAR0309559 (Wallace). We thank Jim Palandri for help with stable isotope analyses, John Donovan for help with the electron microprobe, Sergei Simakin and Nikita Mironov for their help with the ion microprobe and sample preparation. We also thank Gerhard Wörner and an anonymous reviewer for their helpful reviews. The KALMAR project from the Ministry of Science and Education of Germany supported M. Portnyagin. Fieldwork was supported by NSF grant EAR 0537872 and in part by grants 06-05-64960 and 06-05-65037 from the Russian Foundation for Basic Research.

Supplementary material

410_2008_330_MOESM1_ESM.pdf (1.7 mb)
Supplementary material (PDF 1.67 MB)

References

  1. Almeev RR, Kimura JI, Ozerov AY, Ariskin AA, Barmina GS (2003) From high-Mg basalts to dacites: continued crystal fractionation in the Klyuchevskoy-Bezymianny magma plumbing system, Kamchatka. Geochim Cosmochim Acta 67:A13Google Scholar
  2. Anderson AT (1973) The before-eruption water content of some high-alumina magmas. Bull Volcanol 37:530–552. doi: 10.1007/BF02596890 CrossRefGoogle Scholar
  3. Ariskin AA, Barmina GS, Ozerov AY, Nielsen RL (1995) Genesis of High-Alumina Basalts of Klyuchevskoy Volcano. Petrology 5:496–521Google Scholar
  4. Avdeiko GP, Savelyev DP, Palueva AA, Popruzhenko SV (2007) Evolution of the Kurile–Kamchatka volcanic arcs and dynamics of the Kamchatka–Aleutian junction. In: Eichelberger J, Izbekov P, Kasahara M, Lees J, Gordeev E (eds) Volcanism and tectonics of the Kamchatka Peninsula and adjacent arcs, American Geophysical Union Monograph Series, vol 172, AGU, Washington, pp 37–55Google Scholar
  5. Bailey JC (1996) Role of subducted sediments in the genesis of Kurile–Kamchatka island arc basalts: Sr isotopic and elemental evidence. Geochem J 30:289–321Google Scholar
  6. Bindeman IN, Vinogradov VI, Valley JW, Wooden JL, Natal’in BA (2002) Archean protolith and accretion of crust in Kamchatka: SHRIMP dating of Zircons from Sredinny and Ganal Massifs. J Geol 110:271–289. doi: 10.1086/339532 CrossRefGoogle Scholar
  7. Bindeman IN, Ponomareva VV, Bailey JC, Valley JW (2004) Volcanic arc of Kamchatka: a province with high-delta O-18 magma sources and large-scale O-18/O-16 depletion of the upper crust. Geochim Cosmochim Acta 68(4):841–865. doi: 10.1016/j.gca.2003.07.009 CrossRefGoogle Scholar
  8. Bindeman IN, Eiler JM, Yogodzinski G, Tatsumi Y, Stern C, Grove T et al (2005) Oxygen isotope evidence for slab melting in modern and ancient subduction zones. Earth Planet Sci Lett 235:480–496. doi: 10.1016/j.epsl.2005.04.014 CrossRefGoogle Scholar
  9. Bindeman IN, Sigmarsson O, Eiler JM (2006) Time constraints on the origin of large volume basalts derived from O-isotope and trace element mineral zoning and U-series disequilibria in the Laki and Grímsvötn volcanic system. Earth Planet Sci Lett 245:245–259. doi: 10.1016/j.epsl.2006.02.029 CrossRefGoogle Scholar
  10. Braitseva OA, Melekestsev IV, Ponomareva VV, Sulerzhitsky LD (1995) The ages of calderas, large explosive craters and active volcanoes in the Kurile–Kamchatka region, Russia. Bull Volcanol 57(6):383–402Google Scholar
  11. Braitseva OA, Ponomareva VV, Sulerzhitsky LD, Melekestsev IV, Bailey JC (1997) Holocene key-marker tephra layers in Kamchatka, Russia. Quatern Res 47:125–139. doi: 10.1006/qres.1996.1876 CrossRefGoogle Scholar
  12. Cayol V, Dieterich JH, Okamura AT, Miklius A (2000) High magma storage rates before the 1983 eruption of Kilauea, Hawaii. Science 288:2343–2346. doi: 10.1126/science.288.5475.2343 CrossRefGoogle Scholar
  13. Chiba H, Chacko T, Clayton RN, Goldsmith JR (1989) Oxygen isotope fractionations involving diopside, forsterite, magnetite, and calcite: Application to geothermometry. Geochim Cosmochim Acta 53:2985–2995. doi: 10.1016/0016-7037(89)90174-9 CrossRefGoogle Scholar
  14. Churikova T, Dorendorf F, Worner G (2001) Sources and fluids in the mantle wedge below Kamchatka, evidence for across-arc geochemical variation. J Petrol 42:1567–1593. doi: 10.1093/petrology/42.8.1567 CrossRefGoogle Scholar
  15. Churikova T, Worner G, Mironov N, Kronz A (2007) Volatile (S, Cl and F) and fluid mobile trace element compositions in melt inclusions: implications for variable fluid sources across the Kamchatka arc. Contrib Mineral Petrol 154(2):217–239. doi: 10.1007/s00410-007-0190-z CrossRefGoogle Scholar
  16. Costa F, Dungan M (2005) Short time scales of magmatic assimilation from diffusion modeling of multiple elements in olivine. Geology 33:837–840. doi: 10.1130/G21675.1 CrossRefGoogle Scholar
  17. Dorendorf F, Wiechert U, Worner G (2000) Hydrated sub-arc mantle: a source for the Klyuchevskoy volcano, Kamchatka/Russia. Earth Planet Sci Lett 175:69–86. doi: 10.1016/S0012-821X(99)00288-5 CrossRefGoogle Scholar
  18. Ducea MN, Barton MD (2007) Igniting flare-up events in Cordillieran arcs. Geology 35:1047–1050. doi: 10.1130/G23898A.1 CrossRefGoogle Scholar
  19. Duggen S, Portnyagin M, Baker J, Ulfbeck D, Hoernle K, Garbe-Schonberg D et al (2007) Drastic shift in lava geochemistry in the volcanic-front to rear-arc region of the Southern Kamchatkan subduction zone: evidence for the transition from slab surface dehydration to sediment melting. Geochim Cosmochim Acta 71:452–480. doi: 10.1016/j.gca.2006.09.018 CrossRefGoogle Scholar
  20. Eiler JM (2001) Oxygen isotope variations in basaltic lavas and upper mantle rocks. Rev Mineral Geochem 43:319–364CrossRefGoogle Scholar
  21. Eiler JM, Crawford A, Elliott T, Farley KA, Valley JW, Stolper EM (2000) Oxygen isotope geochemistry of oceanic-arc lavas. J Petrol 41:229–256CrossRefGoogle Scholar
  22. Garcia MO, Ito E, Eiler JM, Pietruszka AJ (1998) Crustal contamination of Kilauea volcano magmas revealed by oxygen isotope analyses of glass and olivine from Puu Oo eruption lavas. J Petrol 39:803–817. doi: 10.1093/petrology/39.5.803 CrossRefGoogle Scholar
  23. Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes. 4. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119(2–3):197–212. doi: 10.1007/BF00307281 CrossRefGoogle Scholar
  24. Gorbatov A, Kostoglodov V, Suarez G, Gordeev E (1997) Seismicity and structure of the Kamchatka subduction zone. J Geophys Res 102:17833–17898. doi: 10.1029/96JB03491 CrossRefGoogle Scholar
  25. Gorbatov A, Domínguez J, Suárez G, Kostoglodov V, Zhao D, Gordeev E (1999) Tomographic imaging of the P-wave velocity structure beneath the Kamchatka peninsula. Geophys J Int 137(2):269–279. doi: 10.1046/j.1365-246X.1999.00801.x CrossRefGoogle Scholar
  26. Grove TL, Parman SW, Bowring SA, Price RC, Baker MB (2002) The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N. California. Contrib Mineral Petrol 142:375–396Google Scholar
  27. Grove TL, Chatterjee N, Parman SW, Medard E (2006) The influence of H2O on mantle wedge melting. Earth Planet Sci Lett 249(1–2):74–89. doi: 10.1016/j.epsl.2006.06.043 CrossRefGoogle Scholar
  28. Gurenko AA, Belousov AB, Trumbull RB, Sobolev AV (2005) Explosive basaltic volcanism of the Chikurachki volcano (Kurile arc, Russia): insights on pre-eruptive magmatic conditions and volatile budget revealed from phenocryst-hosted melt inclusions and groundmass glasses. J Volcanol Geotherm Res 147:203–232. doi: 10.1016/j.jvolgeores.2005.04.002 CrossRefGoogle Scholar
  29. Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Mineral Petrol 98:455–489. doi: 10.1007/BF00372365 CrossRefGoogle Scholar
  30. Hora JM, Singer BS, Worner G (2007) Volcano evolution and eruptive flux on the thick crust of the Andean Central Volcanic Zone: Ar-40/Ar-39 constraints from Volcan Parinacota, Chile. Geol Soc Am Bull 119:343–362. doi: 10.1130/B25954.1 CrossRefGoogle Scholar
  31. Ionov DA, Seitz HM (2008) Lithium abundances and isotopic compositions in mantle xenoliths from subduction and intra-plate settings: mantle sources vs. eruption histories. Earth Planet Sci Lett 3–4:316–331. doi: 10.1016/j.epsl.2007.11.020 CrossRefGoogle Scholar
  32. Ishimaru S, Arai S, Ishida T, Shirasaka M, Okrugin VM (2004) Melting and multi-stage metasomatism in the mantle wedge beneath a frontal arc inferred from highly depleted peridotitic xenoliths from Avacha volcano, S Kamchatka. J Petrol 48:395–433. doi: 10.1093/petrology/egl065 CrossRefGoogle Scholar
  33. Johnson E, Wallace PW, Delgado GH, Manea V, Kent A, Bindeman IN, Donegan C (2008) The origin of H2O-rich subduction components beneath the Michoacán-Guanajuato Volcanic Field, Mexico: insights from magmatic volatile contents, oxygen isotopes, and 2-D thermal models for the subducted slab and mantle wedge. J Petrol (in press)Google Scholar
  34. Kepezhinskas P, Defant MJ, Widom E (2002) Abundance and distribution of PGE and Au in the island-arc mantle: implications for subarc metasomatism. Lithos 60:113–128. doi: 10.1016/S0024-4937(01)00073-1 CrossRefGoogle Scholar
  35. Kersting AB (1991) Petrology and geochemistry of Klyuchevskoy Volcano, Kamchatka, U.S.S.R.; implications for the chemical and physical evolution of island arcs, PhD Dissertation, University of Michigan, Ann Arbor, p 245Google Scholar
  36. Kersting AB, Arculus RJ (1994) Klyuchevskoy volcano, Kamchatka Russia—the role of high-flux recharged, tapped, and fractionated magma chamber(s) in the genesis of high-Al2O3 from high MgO basalt. J Petrol 35(1):1–41Google Scholar
  37. Kersting AB, Arculus RJ (1995) Pb isotope composition of Klyuchevskoy volcano, Kamchatka and North Pacific sediments: implications for magma genesis and crustal recycling in the Kamchatkan arc. Earth Planet Sci Lett 136(3–4):133–148. doi: 10.1016/0012-821X(95)00196-J CrossRefGoogle Scholar
  38. Khrenov AP, Dvigalo VN, Kirsanov IT, Fedotov SA, Gorel’chik VI, Zharinov NA (1991) Klyuchevskoy volcano. In: Fedotov SA, Masurenkov YP (eds) Active volcanoes of Kamchatka, vol 1. Nauka Publishers, Moscow, pp 104–153Google Scholar
  39. Khubunaya SA, Gontovaya LI, Sobolev AV, Niskous I (2007) Magma chambers beneath Klyuchevskoy group volcanoes. Volcanol Seismol 2:32–54Google Scholar
  40. Konstantinovskaia EA (2001) Geodynamics of an early eocene arc-continent collision reconstructed from the Kamchatka Orogenic Belt, NE Russia. Tectonophysics 325:87–105. doi: 10.1016/S0040-1951(00)00132-3 CrossRefGoogle Scholar
  41. Lander AV, Shapiro MN (2007) The origin of the modern Kamchatka zone. In: Volcanism and subduction: the Kamchatka Region. Geophys Monograph Series, vol 172. AGU, Washington, pp 57–64Google Scholar
  42. Lees JM, Symons N, Chubarova O, Gorelchik V, Ozerov A (2007) Tomographic images of Klyuchevskoy volcano P-wave velocity. In: Eichelberger J, Izbekov P, Kasahara M, Lees J, Gordeev E (eds) Volcanism and tectonics of the Kamchatka Peninsula and adjacent arcs, American Geophysical Union Monograph Series. AGU, Washington, pp 293–302Google Scholar
  43. Levin V, Shapiro N, Park J, Ritzwoller M (2002) Seismic evidence for catastrophic slab loss beneath Kamchatka. Nature 418:763–767. doi: 10.1038/nature00973 CrossRefGoogle Scholar
  44. Manea VC, Manea M, Clark S (2007) Thermal models beneath Kamchaka and the Pacific plate rejuvenation from a mantle plume impact. In: Eichelberger J, Izbekov P, Kasahara M, Lees J, Gordeev E (eds) Volcanism and tectonics of the Kamchatka Peninsula and adjacent arcs, American Geophysical Union Monograph Series. AGU, Washington, pp 77–90Google Scholar
  45. Martin E, Bindeman IN, Grove TL (2008) Subduction in high fluid fluxing environment and the origin of high-d18O lavas in Mt. Shasta, Cascade arc, California (in preparation)Google Scholar
  46. Melekestsev IV (1980) Volcanism and relief formation. Nauka Publishers, Moscow (in Russian)Google Scholar
  47. Mironov NL, Portnyagin MV, Pletchov PY, Khubunaya SA (2001) Final stages of mama evolution in Klyuchevskoy volcano, Kamchatka: evidence form melt inclusions in minerals of high-alumina basalts. Petrology 9(1):51–69Google Scholar
  48. Muehlenbachs K (1986) Alteration of the oceanic crust and the 18O history of seawater. In: JW Valley, HP Taylor, JR O’Neil Jr (eds) Stable isotopes in high temperature geological processes. Rev Mineral 16:425–444Google Scholar
  49. Newman S, Lowenstern JB (2002) VolatileCalc: a silicate melt-H2O-CO2 solution model written in Visual Basic for excel. Comput Geosci 28:597–604. doi: 10.1016/S0098-3004(01)00081-4 CrossRefGoogle Scholar
  50. Ozerov AY (2000) The evolution of high-alumina basalts of the Klyuchevskoy volcano, Kamchatka, Russia, based on microprobe analyses of mineral inclusions. J Volcanol Geotherm Res 95:65–79. doi: 10.1016/S0377-0273(99)00118-3 CrossRefGoogle Scholar
  51. Ozerov AY, Ariskin AA, Kyle P, Bogoyavlenskaya GE, Karpenko SF (1997) Petrological–geochemical model for genetic relationships between basaltic and andesitic magmatism of Klyuchevskoi and Bezymyannyi volcanoes, Kamchatka. Petrology 5/6:614–635Google Scholar
  52. Pineau F, Semet MP, Grassineau N, Okrugin VM, Javoy M (1999) The genesis of the stable isotope (O, H) record in arc magmas: the Kamchatka’s case. Chem Geol 62:157–176Google Scholar
  53. Piyp VB, Yefimova YA (1993) Seismic sections of the earth’s crust under volcanoes of Kamchatka. Int Geol Rev 35:170–177Google Scholar
  54. Pokrovsky BG, Volynets ON (1999) Oxygen-isotope geochemistry in volcanic rocks of the Kurile–Kamchatka arc. Petrology 7:227–251Google Scholar
  55. Ponomareva VV, Melekestsev IV, Dirksen OV (2006) Sector collapses and large landslides on late Pleistocene–Holocene volcanoes in Kamchatka, Russia. J Volcanol Geotherm Res 158:117–138. doi: 10.1016/j.jvolgeores.2006.04.016 CrossRefGoogle Scholar
  56. Ponomareva VV, Kyle PR, Pevzner MM, Sulerzhitsky LD, Hartman M (2007) Holocene eruptive history of Shiveluch volcano. Kamchatka Peninsula. In: Eichelberger J, Gordeev E, Kasahara M, Izbekov P, Lees J (eds) Volcanism and tectonics of the Kamchatka Peninsula and adjacent arcs, American Geophysical Union Geophysical Monograph Series, vol 172. AGU, Washington, pp 263–282Google Scholar
  57. Portnyagin M, Manea VC (2008) Mantle temperature control on composition of arc magmas along the Central Kamchatka Depression. Geology 36(7):519–522. doi: 10.1130/G24636A Google Scholar
  58. Portnyagin M, Hoernle K, Avdeiko GP, Hauff F, Werner R, Bindeman IN et al (2005) Transition from arc to oceanic magmatism at the Kamchatka–Aleutian junction. Geology 33(1):25–28. doi: 10.1130/G20853.1 CrossRefGoogle Scholar
  59. Portnyagin M, Hoernle K, Plechov P, Mironov N, Khubunaya S (2007a) Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions form the Kamchatka Arc. Earth Planet Sci Lett 255:53–69. doi: 10.1016/j.epsl.2006.12.005 CrossRefGoogle Scholar
  60. Portnyagin M, Bindeman IN, Hoernle K, Hauff F (2007b) Geochemistry of primitive lavas of the Central Kamchatka depression: magma generation at the edge of the Pacific Plate. In: Eichelberger J, Izbekov P, Kasahara M, Lees J, Gordeev E (eds) Volcanism and tectonics of the Kamchatka Peninsula and adjacent arcs, American Geophysical Union Monograph Series, vol 172. AGU, Washington, pp 199–239Google Scholar
  61. Rapp RP, Watson EB (1995) Dehydration melting of metabasalts at 8–32 kbars: implications for continental growth and crust-mantle recycling. J Petrol 36:891–931Google Scholar
  62. Sobolev AV, Chaussidon M (1996) H2O concentrations in primary melts from suprasubduction zones and mid-ocean ridges: implications for H2O storage and recycling in the mantle. Earth Planet Sci Lett 137:45–55Google Scholar
  63. Sobolev AV, Hofmann, AW, Kuzmin DV et al (2007) The amount of recycled crust in sources of mantle-derived melts. Science 316:412–417. doi: 10.1126/science.1138113 Google Scholar
  64. Spilliaert N, Allard P, Metrich N, Sobolev V (2006) Melt inclusion record of the conditions of ascent, degassing, and extrusion of volatile-rich alkali basalt during the powerful 2002 flank eruption of Mount Etna (Italy). J Geophys Res. Series/Report no.:/111. doi: 10.1029/2005JB003934
  65. Staudigel H, Davies GR, Hart SR, Marchant KM, Smith BM (1995) Large-scale isotopic Sr, Nd and O isotopic anatomy of altered oceanic crust-DSP/ODP sites 417/418. Earth Planet Sci Lett 130:169–185. doi: 10.1016/0012-821X(94)00263-X CrossRefGoogle Scholar
  66. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for the mantle composition and processes. In: Magmatism in the Ocean Basin, vol 42. Geol Soc Sp Publ. Geological Society, London, pp 313–345Google Scholar
  67. Volynets ON (1994) Geochemical types, petrology and genesis of late Cenozoic volcanic rocks from the Kurile–Kamchatka island-arc system. Int Geol Rev 36(4):373–405CrossRefGoogle Scholar
  68. Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res 140:217–240. doi: 10.1016/j.jvolgeores.2004.07.023 CrossRefGoogle Scholar
  69. Yogodzinski GM, Lees JM, Churikova TG, Dorendorf F, Woerner G, Volynets ON (2001) Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature 404:500–504. doi: 10.1038/35054039 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Sara Auer
    • 1
  • Ilya Bindeman
    • 1
  • Paul Wallace
    • 1
  • Vera Ponomareva
    • 2
  • Maxim Portnyagin
    • 3
  1. 1.Department of Geological Sciences1272 University of OregonEugeneUSA
  2. 2.Institute of Volcanology and SeismologyPetropavlovsk-KamchatskyRussia
  3. 3.IFM-GEOMAR Leibniz Institute for Marine SciencesThe University of KielKielGermany

Personalised recommendations