On the origin of mixed-layered clay minerals from the San Andreas Fault at 2.5–3 km vertical depth (SAFOD drillhole at Parkfield, California)

  • A. M. SchleicherEmail author
  • L. N. Warr
  • B. A. van der Pluijm
Original Paper


A detailed mineralogical study is presented of the matrix of mudrocks sampled from spot coring at three key locations along the San Andreas Fault Observatory at depth (SAFOD) drill hole. The characteristics of authigenic illite–smectite (I–S) and chlorite–smectite (C–S) mixed-layer mineral clays indicate a deep diagenetic origin. A randomly ordered I–S mineral with ca. 20–25% smectite layers is one of the dominant authigenic clay species across the San Andreas Fault zone (sampled at 3,066 and 3,436 m measured depths/MD), whereas an authigenic illite with ca. 2–5% smectite layers is the dominant phase beneath the fault (sampled at 3,992 m MD). The most smectite-rich mixed-layered assemblage with the highest water content occurs in the actively deforming creep zone at ca. 3,300–3,353 m (true vertical depth of ca. 2.7 km), with I–S (70:30) and C–S (50:50). The matrix of all mudrock samples show extensive quartz and feldspar (both plagioclase and K-feldspar) dissolution associated with the crystallization of pore-filling clay minerals. However, the effect of rock deformation in the matrix appears only minor, with weak flattening fabrics defined largely by kinked and fractured mica grains. Adopting available kinetic models for the crystallization of I–S in burial sedimentary environments and the current borehole depths and thermal structure, the conditions and timing of I–S growth can be evaluated. Assuming a typical K+ concentration of 100–200 ppm for sedimentary brines, a present-day geothermal gradient of 35°C/km and a borehole temperature of ca. 112°C for the sampled depths, most of the I–S minerals can be predicted to have formed over the last 4–11 Ma and are probably still in equilibrium with circulating fluids. The exception to this simple burial pattern is the occurrence of the mixed layered phases with higher smectite content than predicted by the burial model. These minerals, which characterize the actively creeping section of the fault and local thin film clay coating on polished brittle slip surfaces, can be explained by the influence of either cooler fluids circulating along this segment of the fault or the flow of K+-depleted brines.


SAFOD Illite–smectite Mixed-layered clays San Andreas Fault 



The Deutsche Forschungsgemeinschaft (DFG Project SCHL 1821/1-1 and 1–2), and the National Science Foundation (EAR-0345985) provided support for our SAFOD research. The CGS at the University of Strasbourg is thanked for allowing us access to their laboratory equipment. Thanks to Steve Hickman and John Solum for providing samples and to our colleagues from the SAFOD project for discussions. Chris Marone and an anonymous reviewer are thanked for helpful comments and corrections that resulted in an improved presentation of the work.


  1. Aplin AC, Matenaar IF, Mc Carty DK, van der Pluijm BA (2006) Influence of mechanical compaction and clay mineral diagenesis on the microfabric and pore-scale properties of deep-water Gulf of Mexico mudstones. Clays Clay Miner 54(4):500–514. doi: 10.1346/CCMN.2006.0540411 CrossRefGoogle Scholar
  2. Bird P (1984) Hydration-phase diagrams and friction of montmorillonite under laboratory and geologic conditions, with implications for shale compaction, slope stability and strength of fault gouge. Tectonophysics 107:235–260. doi: 10.1016/0040-1951(84)90253-1 CrossRefGoogle Scholar
  3. Blythe AE, d’Alessio MA, Buergmann R (2004) Constraining the exhumation and burial history of the SAFOD pilot hole with apatite fission track and (U/Th)/He thermochronometry. Geophys Res Lett 31:LI5S16. doi: 10.1029/2003GL019407
  4. Boness NL, Zoback M (2006) Mapping stress and structurally controlled crustal shear velocity anisotropy in California. Geology 34(10):825–828. doi: 10.1130/G22309.1 CrossRefGoogle Scholar
  5. Bradbury KK, Barton DC, Solum JG, Draper SD, Evans JP (2007) Mineralogic and textural analyses of drill cuttings from the San Andreas Fault Observatory at Depth (SAFOD) boreholes: initial interpetations of fault zone composition and constraints on geologic models. Geosphere 3(5):299–318. doi: 10.1130/GES00076.1 CrossRefGoogle Scholar
  6. Day-Stirrat RJ, Aplin AC, Srodon J, van der Pluijm BA (2008) Diagenetic reorientation of phyllosilicates minerals in paleogene mudstones of the Podhale basin, South Poland. Clays Clay Miner 56(1):100–111. doi: 10.1346/CCMN.2008.0560109 CrossRefGoogle Scholar
  7. Dickinson WR (1966) Structural relationships of San Andreas fault system, Cholame Valley and Caslte Mountain Range, California. Geol Soc Am Bull 77:707–726. doi: 10.1130/0016-7606(1966)77[707:SROSAF]2.0.CO;2 CrossRefGoogle Scholar
  8. Dong H, Peacor DR, Freed RL (1997) Phase relations among smectite, R1 illite-smectite and illite. Am Mineral 82:379–391Google Scholar
  9. Draper SD, Boness NL, Evans JP (2005) Source and Significance of the Sedimentary Rocks in the SAFOD Borehole: Preliminary Analysis. Eos Trans AGU 86(52):T24B–02Google Scholar
  10. Evans JP, Chester FM (1995) Fluid–rock interaction in faults of the San Andreas system: inferences from San Gabriel fault rock geochemistry and microstructures. J Geophys Res 100(B7):13007–13020. doi: 10.1029/94JB02625 CrossRefGoogle Scholar
  11. Grim RE, Bradley WF (1948) Rehydration and dehydration of the clay minerals. Am Mineral 33:50–59Google Scholar
  12. Grim RE, Rowland RA (1944) Differential thermal analysis of clays and shales, control and prospecting method. Am Ceram Soc J 27:65–76. doi: 10.1111/j.1151-2916.1944.tb14871.x CrossRefGoogle Scholar
  13. Hansen PL, Lindgreen H (1989) Mixed layer illite/smectite diagenesis in Upper Jurassic claystones from the North Sea and onshore Denmark. Clay Miner 24(2):197–213. doi: 10.1180/claymin.1989.024.2.07 CrossRefGoogle Scholar
  14. Hickman SH, Zoback MD, Ellsworth WL (2004) Introduction to special sections: preparing for the San Andreas Fault Observatory at Depth. Geophys Res Lett 31:L12S01. doi: 10.1029/2004GL020688 CrossRefGoogle Scholar
  15. Hickman S, Zoback M, Ellsworth W (2005) Structure and composition of the San Andreas Fault Zone at Parkfield: results from SAFOD Phase 1 and 2, EOS 87 (Fall Meet. Suppl.), abstr. T23E-05Google Scholar
  16. Ho NC, Peacor DR, van der Pluijm BA (1999) Preferred orientation of phyllosilicates in Gulf Coast mudstones and relation to the smectite–illite transition. Clays Clay Miner 47:495–504. doi: 10.1346/CCMN.1999.0470412 CrossRefGoogle Scholar
  17. Hoffmann J, Hower J (1979) Clay mineral assemblages as low grade metamorphic geothermometers: application to the thrust faulted disturbed beld of Montana, USA. SEPM Spec Publ 26:55–79Google Scholar
  18. Huang W, Longo JM, Pevear DR (1993) An experimentally derived kinetic model for smectite to illite conversion and its use as a geothermometer. Clays Clay Miner 41(2):162–177. doi: 10.1346/CCMN.1993.0410205 CrossRefGoogle Scholar
  19. Hunziker JC, Frey M, Clayer N, Dallmeyer RD, Friedrichsen H, Flehming W et al (1986) The evolution of illite to muscovite:mineralogical and isotopic data from the Glarus Alps, Switzerland. Contrib Mineral Petrol 92:157–180. doi: 10.1007/BF00375291 CrossRefGoogle Scholar
  20. Ikari MJ, Saffer DM, Marone C (2007) Effect of hydration state on the frictional properties of montmorillonite-based fault gouge. J Geophys Res 112:B06423. doi: 10.1029/2006JB004748 CrossRefGoogle Scholar
  21. Janssen C, Laube N, Bau M, Gray DR (1998) Fluid regime in faulting deformation of the Waratah Fault Zone, Australia, as inferred from major and minor element analysis and stable isotopic signatures. Tectonophysics 294(1–2):109–130. doi: 10.1016/S0040-1951(98)00127-9 CrossRefGoogle Scholar
  22. Janssen C, Romer RL, Plessen B, Naumann R, Hoffmann-Rothe A, Matar A (2007) Contrasting fluid regimes along the Dead Sea Transform. Geofluids 7:275–291. doi: 10.1111/j.1468-8123.2007.00185.x CrossRefGoogle Scholar
  23. Kim J, Peacor DR, Tessier D, Elsass F (1995) A technique for maintaining texture and permanent expansion of smectite interlayers for TEM observations. Clays Clay Miner 43:51–57. doi: 10.1346/CCMN.1995.0430106 CrossRefGoogle Scholar
  24. Lanson B, Champion D (1991) The I/S-to-illite reaction in the late stage diagenesis. Am J Sci 291:473–506Google Scholar
  25. Moore DM, Reynolds RC (1997) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, Oxford, p 378Google Scholar
  26. Moore DE, Rymer MJ (2007) Talc bearing serpentinite and the creeping section of the San Andreas fault. Nature 448(16):795–797. doi: 10.1038/nature06064 CrossRefGoogle Scholar
  27. Morrow CA, Solum JG, Tembe SD, Lockner DA, Wong TF (2007) Using drill cutting separates to estimate the strength of narrow shear zones at SAFOD. Geophys Res Lett (submitted)Google Scholar
  28. Nadeau R, Michelini A, Uhrhammer R, Dolenc D, McEvilly T (2004) Fault structure, microearthquake recurrence and deep fault slip surrounding the SAFOD target. Geophys Res Lett 31:L12S08. doi: 10.1029/2003GL019409 CrossRefGoogle Scholar
  29. Nieto F, Ortega-Huertas M, Peacor DR, Arostegui J (1996) Evolution of illite/smectite from early diagenesis through incipient metamorphism in sediments of the Basque-Cantabrian Basin. Clays Clay Miner 44(3):304–323. doi: 10.1346/CCMN.1996.0440302 CrossRefGoogle Scholar
  30. O’Neil JR (1985) Water–rock interactions in fault gouge. Pure Appl Geophys 122:440–446. doi: 10.1007/BF00874610 CrossRefGoogle Scholar
  31. Oertel G (1985) The relationship of strain and preferred orientation of phyllosilicate grains in rocks: a review. Tectonophysics 100:413–447. doi: 10.1016/0040-1951(83)90197-X CrossRefGoogle Scholar
  32. Page BM, Thompson GA, Coleman RG (1998) Late Cenozoic tectonics of the central and southern Coast Ranges of California. Geol Soc Am Bull 110:846–876. doi:10.1130/0016-7606(1998)110<0846:OLCTOT>2.3.CO;2CrossRefGoogle Scholar
  33. Pares JM, Schleicher AM, van der Pluijm BA, Hickman SH (2008) Paleomagnetic reorientation of the SAFOD borehole. Geophys Res Lett 35:L02306. doi: 10.1029/2007GL030921 CrossRefGoogle Scholar
  34. Peacor DR (1992) Diagenesis and low-grade metamorphism of shales and slates. In: Buseck PR (ed) Minerals and reactions at atomic scale: transmission electron microscopy, Rev Mineral 27:335–380Google Scholar
  35. Perry E, Hower J (1970) Burial diagenesis in Gulf Coast pelitic sediments. Clays Clay Miner 18:165–177. doi: 10.1346/CCMN.1970.0180306 CrossRefGoogle Scholar
  36. Pollastro RM (1993) Consideration and applications of the illite/smectite geothermometer in hydrocarbon-bearing rocks of Miocene to Mississippian age. Clays Clay Miner 41(2):119–133. doi: 10.1346/CCMN.1993.0410202 CrossRefGoogle Scholar
  37. Reynolds RC, Reynolds RC (1996) NEWMOD: a computer program for the calculation of one-dimensional diffraction patterns of mixed-layered clays. Hanover, New HampshireGoogle Scholar
  38. Rutter EH, Maddock RH, Hall SH, White SH (1986) Comparative microstructure of natural and experimentally produced clay bearing fault gouges. Pure Appl Geophys 24:3–30. doi: 10.1007/BF00875717 CrossRefGoogle Scholar
  39. Rutter EH, Holdsworth RE, Knipe RJ (2001) The nature and tectonic significance of fault-zone weakening: an introduction, Geological Society of London. Spec Publ 186(1):1–11Google Scholar
  40. Sachsenhofer RF, Rantitsch G, Hasenhuettl C, Russegger B, Jelen B (1998) Smectite to illite diagenesis in early Miocene sediments from the hyperthermal western Pannonian Basin. Clay Miner 33:523–537Google Scholar
  41. Saffer DM, Marone C (2003) Comparison of smectite- and illite-rich gouge frictional properties: application to the updip limit of the seismogenic zone along subduction megathrusts. Earth Planet Sci Lett 215:219–235. doi: 10.1016/S0012-821X(03)00424-2 CrossRefGoogle Scholar
  42. Schleicher AM, van der Pluijm BA, Solum JG, Warr LN (2006) The origin and significance of clay minerals on surfaces, in fractures and in veins from SAFOD borehole samples (Parkfield, California). Gophys Res Lett 33:LI 6313Google Scholar
  43. Solum JG, van der Pluijm BA (2005) Phyllosilicate mineral assemblages of the SAFOD pilot hole and comparison with an exhumed segment of the San Andreas Fault system. Geophys Res Lett 31:L15S19. doi: 10.1029/2004GL019909 CrossRefGoogle Scholar
  44. Solum JG, van der Pluijm BA, Peacor DR, Warr LN (2003) Influence of phyllosilicate mineral assemblages, fabrics, and fluids on the behavior of the Punchbowl fault, southern California. J Geophys Res 108, B5: 5–1 to 5–12Google Scholar
  45. Solum JG, Hickman SH, Lockner DA, Moore DE, van der Pluijm BA, Schleicher AM et al (2006) Mineralogical characterization of protolith and fault rocks from the SAFOD main hole. Geophys Res Lett 33:L21314. doi: 10.1029/2006GL027285 CrossRefGoogle Scholar
  46. Srodon J, Morgan DJ, Eslinger EV, Eberl DD, Karlinger MR (1986) Chemistry of illite/smectite and end-member illite. Clays Clay Miner 34(4):368–378. doi: 10.1346/CCMN.1986.0340403 CrossRefGoogle Scholar
  47. Srodon J, Kotarba M, Biron A, Such P, Clauer N, Wojtowicz A (2006) Diagenetic history of the Podhale-Orava Basin and the underlying Tatra sedimentary structural units (Western Carpathians): evidence from XRD and K-Ar of illite-smectite. Clay Miner 41:751–774. doi: 10.1180/0009855064130217 CrossRefGoogle Scholar
  48. Sucha V, Kraus I, Gerthofferova H, Petes J, Serekova M (1993) Smectite to illite conversion in bentonites and shales of the East Slovak Basin. Clay Miner 28:243–253. doi: 10.1180/claymin.1993.028.2.06 CrossRefGoogle Scholar
  49. Tembe SD, Lockner DA, Solum JG, Morrow CA, Wong TF, Moore DE (2006) Frictional strength of cuttings and core from SAFOD drillhole phases 1 and 2. Geophys Res Lett 33:L23307. doi: 10.1029/2006GL027626 CrossRefGoogle Scholar
  50. Thurber C, Roecker S, Zhang H, Baher S, Ellsworth WL (2004) Fine-scale structure of the San Andreas fault zone and location of the SAFOD target earthquakes. Geophys Res Lett 31:L12S02CrossRefGoogle Scholar
  51. Tourscher S, Schleicher AM, van der Pluijm BA, Warr LN (2008) Constraints on mineralization, fluid-rock interaction and mass transfer during faulting at 3 km depth from the SAFOD drill hole. J Geophys Res (submitted)Google Scholar
  52. van der Pluijm BA, Ho N-C, Peacor DR (1994) High-resolution X-ray texture goniometry. J Struct Geol 16:1029–1032. doi: 10.1016/0191-8141(94)90084-1 CrossRefGoogle Scholar
  53. Vrolijk P, van der Pluijm BA (1999) Clay gouge. J Struct Geol 21:1039–1048. doi: 10.1016/S0191-8141(99)00103-0 CrossRefGoogle Scholar
  54. Wallace (ed) (1990) The San Andreas Fault System, California, Geological Survey, Professional Paper 1515, United States Government Printing Office, WashingtonGoogle Scholar
  55. Warr LN, Cox S (2001) Clay mineral transformation and weakening mechanisms along the Trans Alpine Fault, New Zealand, Geological Society London. Spec Publ 186:85–101CrossRefGoogle Scholar
  56. Warr LN, Nieto F (1998) Crystallite thickness and defect density of phyllosilicates in low-temperature metamorphic pelites: a TEM and XRD study of claymineral crystallinity index standards. Can Mineral 36:1453–1474Google Scholar
  57. Wenk HR (1985) Preferred orientation in deformed rocks (eds.), Academic Press, OrlandoGoogle Scholar
  58. Williams CF, Grubb FV, Galanis SP Jr (2004) Heat flow in the SAFOD pilot hole and implications for the strength of the San Andreas Fault. Geophys Res Lett 31:L15S14. doi: 10.1029/2003GL019352 CrossRefGoogle Scholar
  59. Williams CF, Grubb FV, Galanis SP (2006) Heat-flow measurements across the San Andreas Fault near Parkfiel, California, preliminary results from SAFOD. EOS 87 (Fall Meet.Suppl.), abstr. S33B-0241Google Scholar
  60. Wu FT, Blatter L, Roberson H (1974) Clay gouges in the San Andreas fault system and their possible implications. Pure Appl Geophys 113:87–96. doi: 10.1007/BF01592901 CrossRefGoogle Scholar
  61. Yonghong Y, van der Pluijm BA, Peacor DR (2001) Deformation microfabrics of clay gouge, Lewis Thrust, Canada: a case for fault weakening from clay transformation. Geological Society. Spec Publ 186:103–112Google Scholar
  62. Zoback M, Hickman S, Ellsworth W (2005) Drilling, sampling and measurements in the San Andreas Fault Zone at seismogenic depth, EOS 87 (Fall Meet. Suppl.), abstr. T23E-01Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • A. M. Schleicher
    • 1
    • 3
    Email author
  • L. N. Warr
    • 2
  • B. A. van der Pluijm
    • 3
  1. 1.Geozentrum NordbayernUniversität Erlangen-NürnbergErlangenGermany
  2. 2.Institut für Geographie und GeologieErnst-Moritz-Arndt-Universität GreifswaldGreifswaldGermany
  3. 3.Department of Geological SciencesUniversity of MichiganAnn ArborUSA

Personalised recommendations