Abstract
The Coast Range ophiolite (CRO) of California is one of the most extensive tracts of oceanic crust preserved in the North American Cordillera, but its origin has long remained controversial. We present here new data on mineral compositions in mantle peridotites that underlie crustal sections of the ophiolite, and show that these are dominantly refractory harzburgites related to high apparent melting in a supra-subduction zone (SSZ) setting. Abyssal peridotite (characterized by high-Al spinels and relatively high Ti, Na, Nd, Sm, Lu, and Hf in pyroxene) occurs at one location where it is associated with SSZ mantle peridotite and volcanic rocks with both oceanic and arc-like geochemistry. SSZ mantle peridotites (characterized by intermediate-Cr/Al or high-Cr spinels, and by extremely low Ti, Na, Nd, Sm, Lu, and Hf in pyroxenes) are associated with crustal sections containing arc-related volcanic rocks, including boninites. This convergence between conclusions based on crustal lithologies and their underlying mantle sections confirms previous proposals that link the CRO to SSZ processes, and seriously undermines hypotheses that invoke formation of the ophiolite at a mid-ocean ridge spreading center.
This is a preview of subscription content, access via your institution.









References
Arai S (1994) Characterization of spinel peridotites by olivine–spinel compositional relationships: review and interpretations. Chem Geol 113:191–204
Batanova VG, Sobolev AV (2000) Compositional heterogeneity in subduction-related mantle peridotites, Troodos massif, Cyprus. Geology 28:55–58
Brandon AD, Snow JE, Walker RJ, Morgan JW, Mock TD (2000) 190Pt186Os and 187Re187Os systematics of abyssal peridotites. Earth Planet Sci Lett 177:319–335
Bizimis M, Salters VJM, Bonatti E (2000) Trace and REE content of clinopyroxenes from supra-subduction zone peridotites. Implications for melting and enrichment processes in island arcs. Chem Geol 165:67–85
Brouxel M, Lapierre H (1988) Geochemical study of an early Paleozoic insland-arc-back-arc basin system. Part 1: The Trinity Ophiolite (northern California). GSA Bull 100:1111–1119
Choi SH, Mukasa SB, Shervais JW (2008) Initiation of Franciscan subduction along a large-offset fracture zone: evidence from mantle peridotites, Stonyford, California. Geology (in press)
Coleman RG (2000) Prospecting for ophiolites along the California continental margin. In: Dilek Y, Moores E, Elthon D, Nicolas A (eds) Ophiolites and oceanic crust. Geol Soc Am Spec Publ, vol 349, pp 351–364
Dick HJB (1989) Abyssal peridotites, very slow spreading ridges, and ocean ridge magmatism. In: Saunders AJ, Norry MJ (eds) Magmatism in the Oceanic Basins. Geol Soc London Spec Publ, vol 42, pp 71–105
Dick HJB, Bullen T (1984) Chromian spinal as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Mineral Petrol 86:54–76
Dick HHB, Fisher RL, Bryan WB (1984) Mineralogic variability of the uppermost mantle along mid-ocean ridges. Earth Planet Sci Lett 69:88–106
Edwards SJ, Falloon TJ, Malpas J, Pedersen RB (1996) A review of the petrology of harzburgites at Hess Deep and Garrett Deep: implications for mantle processes beneath Segments of the East Pacific Rise. In: MacLeod CJ, Tyler PA, Walker CL (eds) Tectonic, magmatic, hydrothermal and biological segmentation of mid-ocean ridges. Geol Soc London Spec Publ, vol 118, pp 143–156
Evarts RC, Coleman RG, Schiffman P (1999) The Del Puerto ophiolite: petrology and tectonic setting. In: Wagner DL, Graham SA (eds) Geologic Field Trips in Northern California. California Division of Mines and Geology Spec Publ, vol 119, pp 136–149
Falloon TJ, Green DH, Hatton CJ, Harris KL (1988) Anhydrous partial melting of a fertile and depleted peridotite from 2 to 30 kb and application to basalt petrogenesis. J Petrol 29:1257–1282
Gaetani GA, Grove TL (1998) The influence of water on melting of mantle peridotite. Contrib Mineral Petrol 131:323–346
Giaramita MI, MacPherson GJ, Phipps SP (1998) Petrologically diverse basalts from a fossil oceanic forearc in California: the Llanada and Black Mountain remnants of the Coast Range ophiolite. Geol Soc Am Bull 110:553–571
Godfrey NJ, Dilek Y (2000) Mesozoic assimilation of oceanic crust and island arc into the North American continental margin in California and Nevada: insights from geophysical data. In: Dilek Y, Moores EM, Elthon D, Nicolas A (eds) Ophiolites and oceanic crust: new insights from field studies and the Ocean Drilling Program. Geol Soc Am Boulder Spec Paper, vol 349, pp 365–382
Hamlyn PR, Bonatti E (1980) Petrology of mantle-derived ultramafics from the Owen fracture zone, northwest Indian ocean: implications for the nature of the oceanic upper mantle. Earth Planet Sci Lett 48:65–79
Harper GD (2003) Fe–Ti basalts and propagating-rift tectonics in the Josephine Ophiolite. Geology 115:771–787
Harvey J, Gannoun A, Burton KW, Rogers NW, Alard O, Parkinson IJ (2006) Ancient melt extraction from the oceanic upper mantle revealed by Re–Os isotopes in abyssal peridotites from the Mid-Atlantic ridge. Earth Planet Sci Lett 244:606–621
Hellebrand E, Snow JE, Dick HJ, Hofmann AW (2001) Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410:677–681
Hellebrand E, Snow JE, Hoppe P, Hofmann AW (2002) Garnet field melting and late stage refertilization in residual abyssal peridotites from the Central Indian ridge. J Petrol 43:2305–2338
Hirose K, Kushiro I (1993) Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet Sci Lett 114:477–489
Hopson CA, Pessagno EA Jr (2005) Tehama-Colusa serpentinite mélange: a remnant of Franciscan Jurassic oceanic lithosphere, northern California. Int Geol Rev 47:65–100
Hopson CA, Mattinson JM, Pessagno EA (1981) Coast Range ophiolite, western California. In: Ernst WG (ed) The Geotectonic Development of California. Rubey, vol 1, pp 418–510
Hopson CA, Mattinson JM, Pessagno EA, Luyendyk BP (2008) California Coast Range ophiolite: Composite Middle and Late Jurassic oceanic lithosphere. In: Wright JE, Shervais JW (eds) Ophiolites, arcs, and batholiths: a tribute to Cliff Hopson. Geol Soc Am Spec Paper 438:1–102. doi:10.1130/2008.2438(01)
Ingersoll RA (2000) Models for origin and emplacement of Jurassic ophiolites of northern California. In: Dilek Y, Moores E, Elthon D, Nicolas A (eds) Ophiolites and oceanic crust. Geol Soc Am Spec Publ, vol 349, pp 395–402
Ishii T, Robinson PT, Maekawa H, Fiske R (1992) Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Ogasawara-Mariana forearc, Leg 125. In: Proceedings of the ocean drilling program, scientific results 125. Texas A & M University, Ocean Drilling Program, College Station, pp 445–485
Ishikawa T, Nagaishi K, Umino S (2002) Boninitic volcanism in the Oman ophiolite: Implications for thermal condition during transition from spreading ridge to arc. Geology 30:899–902
Johnson KTM, Dick HJB (1992) Open system melting and temporal and spatial variation of peridotite and basalt at the Atlantis II fracture zone. J Geophys Res 97:9219–9241
Johnson KTM, Dick HJB, Shimizu N (1990) Melting in the oceanic upper mantle; an ion microprobe study of diopsides in abyssal peridotites. J Geophys Res 95:2661–2678
Kelemen PB, Dick HJB, Quick JE (1992) Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature 358:635–641
Kelemen PB, Hirth G, Shimizu N, Spiegelman M, Dick HJB (1997) A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Phil Trans R Soc Lond 355:283–318
Kinzler RJ, Grove TL (1993) Corrections and further discussion of the primary magmas of mid-ocean ridge basalts, 1 and 2. J Geophys Res 98:22339–22348
Le Mée L, Girardeau J, Monnier C (2004) Mantle segmentation along the Oman ophiolite fossil mid-ocean ridge. Nature 432:167–172
Loney R, Himmelberg G, Coleman RG (1971) Structure and petrology of alpine-type peridotite at Burro Mountain, California, USA. J. Petrol 12:245–309
Mattinson JM, Hopson CA (2008) New high-precision CA-TIMS U-Pb zircon plateau ages for the Point Sal and San Simeon ophiolite remnants, California Coast Ranges. In: Wright JE, Shervais JW (eds) Ophiolites, arcs, and batholiths: a tribute to Cliff Hopson. Geol Soc Am Spec Paper 438:103–112. doi:10.1130/2008.2438(02)
Metcalf RV, Shervais JW (2008) Supra-Subduction Zone (SSZ) Ophiolites: is there really an “Ophiolite Conundrum”? In: Wright JE, Shervais JW (eds) Ophiolites, arcs, and batholiths: a tribute to Cliff Hopson. Geol Soc Am Spec Paper, vol 438, pp191–222. doi: 10.1130/2008.2438(07)
Miyashiro A (1973) The Troodos complex was probably formed in an island arc. Earth Planet Sci Lett 19:218–224
Moores E, Kellogg LH, Dilek Y (2000) Tethyan ophiolites, mantle convection, and tectonic “historical contingency”: a resolution of the “ophiolite conundrum” In: Dilek Y, Moores E, Elthon D, Nicolas A (eds) Ophiolites and oceanic crust. Geol Soc Am Spec Publ, vol 349, pp 3–12
Münter O, Pettke T, Desmurs L, Meier M, Schaltegger U (2004) Refertilization of mantle peridotite in embryonic ocean basins: trace element and Nd isotopic evidence and implications for crust–mantle relationships. Earth Planet Sci Lett 221:293–308
Ohara Y, Stern RJ, Ishii T, Yurimoto H, Yamazaki T (2002) Peridotites from the Mariana trough: first look at the mantle beneath an active back-arc basin. Contrib Mineral Petrol 143:1–18
Parkinson IJ, Pearce JA (1998) Peridotites of the Izu-Bonin-Mariana forearc (ODP Leg 125) evidence for mantle melting and melt–mantle interactions in a suprasubduction zone setting. J Petrol 39:1577–1618
Parkinson IJ, Hawkesworth CJ, Cohen AS (1998) Ancient mantle in a modern arc: Osmium isotopes in Izu-Bonin-Mariana forearc peridotites. Science 281:2011–2013
Parkinson IJ, Pearce JA, Thirwall MF, Johnson KTM, Ingram G (1992) Trace element geochemistry of peridotites from the Izu-Bonin-Mariana forearc, Leg 125. In: Fryer P, Pearce JA, Stokking LB (eds) Proceedings of ODP science results, vol 125. Ocean Drilling Program, College Station, pp 487–506
Pearce JA, Lippard SJ, Roberts S (1984) Characteristics and tectonic significance of supra-subduction zone ophiolites. In: Kokelaar PB, Howells MF (eds) Marginal basin geology. Geol Soc London Spec Publ, vol 16, pp 77–94
Pearce JA, Barker PF, Edwards SJ, Parkinson IJ, Leat PT (2000) Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, south Atlantic. Contrib Mineral Petrol 139:36–53
Piccardo GB, Muentener O, Zanetti A, Pittke T (2004) Ophiolitic peridotites of the Alpine–Apennine system: mantle processes and geodynamic relevance. Int Geol Rev 46:1119–1159
Rampone E, Hofmann AW, Raczek I (1998) Isotopic contrasts within the Internal Liguride ophiolite (N. Italy): the lack of a genetic mantle–crust link. Earth Planet Sci Lett 163:175–189
Robinson PT, Melson WG, O’Hearn T, Schmincke HU (1983) Volcanic glass compositions of the Troodos ophiolite, Cyprus. Geology 11:400–404
Seyler M, Toplis MJ, Lorand JP, Luguet A, Cannat M (2001) Clinopyroxene microtextures reveal incompletely extracted melt in abyssal peridotites. Geology 29:155–158
Seyler M, Lorand J-P, Dick HJB, Drouin M (2007) Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15–20 N: ODP Hole 1274A. Contrib Mineral Petrol 153:303–319
Shervais JW (1990) Island arc and ocean crust ophiolites: contrasts in the petrology, geochemistry, and tectonic style of ophiolite assemblages in the California Coast Ranges. In: Malpas J, Moores EM, Panayiotou A, Xenophontos C (eds) Ophiolites: oceanic crustal analogues: proceedings of the symposium Troodos 1987. Geological Survey Department, Nicosia, Cyprus, pp 507–520
Shervais JW (2001) Birth, death, and resurrection: the life cycle of suprasubduction zone Ophiolites. Geochem Geophys Geosyst, vol 2 (Paper number 2000GC000080)
Shervais JW (2008) Tonalites, trondhjemites, and diorites of the Elder Creek ophiolite, California: low-pressure slab melting and reaction with the mantle wedge. In: Wright JE, Shervais JW (eds) Ophiolites, arcs, and batholiths: a tribute to Cliff Hopson. Geol Soc Am Spec Paper, vol 438, pp 113–132. doi:10.1130/2008.2438(03)
Shervais JW, Kimbrough DL (1985) Geochemical evidence for the tectonic setting of the Coast Range ophiolite; a composite island arc–oceanic crust terrane in western California. Geology (Boulder) 13:35–38
Shervais JW, Kimbrough DL, Renne P, Hanan BB, Murchey B, Snow CA, Schuman MZ, Beaman BJ (2004) Multi-stage origin of the Coast Range Ophiolite, California: implications for the life cycle of Supra-Subduction Zone Ophiolites. Int Geol Rev 46:289–315
Shervais JW, Murchey BL, Kimbrough DL, Renne PR, Hanan B (2005a) Radioisotopic and biostratigraphic age relations in the Coast Range ophiolite, Northern California; implications for the tectonic evolution of the western Cordillera. Geol Soc Am Bull 117:633–653
Shervais JW, Zoglman-Schuman MM, Hanan BB (2005b) The Stonyford volcanic complex: a forearc seamount in the Northern California Coast Ranges. J Petrol 46:2091–2128
Shervais JW, Kolesar P, Andreasen K (2005c) Field and chemical study of serpentinization—Stonyford, California: chemical fluxes and mass balance. Int Geol Rev 47:1–23
Shibata T, Thompson G (1986) Peridotites from the Mid-Atlantic Ridge at 43oN and their petrogenetic relation to abyssal tholeiites. Contrib Mineral Petrol 93:144–159
Snow CA (2002) Geology of the Cuesta Ridge ophiolite remnant near San Luis Obispo, California: evidence for the tectonic setting and origin of the Coast Range ophiolite. MS Thesis, Utah State University, 150 p
Sovolev AV, Danyushevsky LV (1994) Petrology and geochemistry of boninites from the north termination of the Tonga trench: constraints on the generation conditions of primary high-Ca boninite magma. J Petrol 35:1183–1211
Stern RJ, Bloomer SH (1992) Subduction zone infancy: examples from the Eocene Izu-Bonin-Mariana and Jurassic California arcs. Geol Soc Am Bull 104:1621–1636
Sun S-S, McDonough WF (1989) Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345
Van der Laan SR, Arculus RJ, Pearce JA, Murton BJ (1992) Petrography, mineral chemistry, and phase relations of the basement boninite series of site 786, Izu-Bonin forearc. In: Proceedings of the ocean drilling program, scientific results. 125. Texas A & M University, Ocean Drilling Program, College Station, pp 171–201
Wasylenki LE, Baker MB, Kent AJR, Stolper EM (2003) Near-solidus melting of the shallow upper mantle: partial melting experiments on depleted peridotite. J Petrol 44:1163–1191
White WM (1993) 238U/204Pb in MORB and open system evolution of the depleted mantle. Earth Planet Sci Lett 115:211–226
Wright JE, Fahan MR (1988) An expanded view of Jurassic orogenesis in the western United States Cordillera; Middle Jurassic (pre-Nevadan) regional metamorphism and thrust faulting within an active arc environment, Klamath Mountains, California. Geol Soc Am Bull 100:859–876
Acknowledgments
This research was supported by NSF grants EAR0440255 (Shervais), EAR0440238 (Mukasa) and KOSEF grant R01-2007-000-20443-0 (Choi). Insightful reviews of an earlier version of this manuscript by Robert Coleman, Julian Pearce, and Linda Elkins-Tanton greatly improved the manuscript. Two anonymous CMP reviewers also helped us to clarify a number of points made in the manuscript. All of these reviewers are gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by T.L. Grove.
Rights and permissions
About this article
Cite this article
Choi, S.H., Shervais, J.W. & Mukasa, S.B. Supra-subduction and abyssal mantle peridotites of the Coast Range ophiolite, California. Contrib Mineral Petrol 156, 551–576 (2008). https://doi.org/10.1007/s00410-008-0300-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00410-008-0300-6