Skip to main content
Log in

Petrogenesis of Permian alkaline lamprophyres and diabases from the Spanish Central System and their geodynamic context within western Europe

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Basic to ultrabasic alkaline lamprophyres and diabases intruded within the Spanish Central System (SCS) during Upper Permian. Their high LREE, LILE and HFSE contents, together with positive Nb–Ta anomalies, link their origin with the infiltration of sublithospheric K-rich fluids. These alkaline dykes may be classified in two distinct groups according to the Sr–Nd isotope ratios: (1) a depleted PREMA-like asthenospheric component, and (2) a BSE-like lithospheric component. A slight enrichment in radiogenic 207Pb and 208Pb allows the contribution of a recycled crustal or lithospheric component in the mantle sources. The intrusion of this alkaline magmatism is likely to have occurred due to adiabatic decompression and mantle upwelling in the context of the widespread rifting developed from Carboniferous to Permian in western Europe. The clear differences in the geochemical affinity of Lower Permian basic magmas from north-western and south-western Europe might be interpreted in terms of a more extensive separation of both regions during that period, until they were assembled during Upper Permian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alibert C (1985) A Sr–Nd isotope and REE study of late Triassic dolerites from the Pyrenees (France) and the Messejana dyke (Spain and Portugal). Earth Planet Sci Lett 73:81–90

    Article  Google Scholar 

  • Bea F, Montero P, Molina JF (1999) Mafic precursors, peraluminous granitoids, and late lamprophyres in the Avila batholith; a model for the generation of Variscan batholiths in Iberia. J Geol 107:399–419

    Article  Google Scholar 

  • Bellon H, Chauris L, Hallegouet B, Thonon P (1988) Magmatisme fissural permien et triasique dans le Pays de Léon (Massif armoricain, France). C R Géosci 307:2049–2054

    Google Scholar 

  • Bernard-Griffiths J, Peucat JJ, Sheppard S, Vidal P (1985) Petrogenesis of Hercynian leucogranites from the southern Armorican Massif: contribution of REE and isotopic (Sr, Nd, Pb and O) geochemical data to the study of source rock characteristics and ages. Earth Planet Sci Lett 74:235–250

    Article  Google Scholar 

  • Bonin B (1988) From orogenic to anorogenic environments: evidence from associated magmatic episodes. Schweiz Mineral Petrogr Mitt 68:301–311

    Google Scholar 

  • Bonin B (2004) Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos 78:1–24

    Article  Google Scholar 

  • Burke K, Kidd WSF, Wilson JT (1973) Relative and latitudinal motion of Atlantic hot spots. Nature 245:133–138

    Article  Google Scholar 

  • Campbell IH (2005) Large igneous provinces and the mantle plume hypothesis. Elements 1:265–269

    Article  Google Scholar 

  • Carignan J, Hild P, Mevelle G, Morel J, Yeghicheyan D (2001) Routine analyses of trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS; a study of geochemical reference materials BR, DR-N, UB-N, AN-G and GH. Geostand Newslett 25:187–198

    Article  Google Scholar 

  • Carraro A, Visonà D (2003) Mantle xenoliths in Triassic camptonite dykes of the Predazzo area (Dolomites, northern Italy); petrography, mineral chemistry and geothermobarometry. Eur J Mineral 15:103–115

    Article  Google Scholar 

  • Casillas R, Vialette Y, Peinado M, Duthou JL, Pin C (1991) Ages et caractéristiques isotopiques (Sr, Nd) des granitoides de la Sierra de Guadarrama occidentale (Espagne). Abstract Séance Spécialisée Soc. Géol. France Mém. Jean Lameyre, s/n

  • Chalapathi Rao NV, Gibson SA, Pyle DM, Dickin AP (2004) Petrogenesis of Proterozoic lamproites and kimberlites from the Cuddapah basin and Dharwar craton, Southern India. J Petrol 45:907–948

    Article  Google Scholar 

  • Cocherie A, Rossi P, Fanning CM, Guerrot C (2005) Comparative use of TIMS and SHRIMP for U–Pb zircon dating of A-type granites and mafic tholeiitic layered complexes and dykes from the Corsican Batholith (France). Lithos 82:185–219

    Article  Google Scholar 

  • Cortesogno L, Cassinis G, Dallagiovanna G, Gaggero L, Oggiano G, Ronchi A, Seno S, Vanossi M (1998) The Variscan post-collisional volcanism in Late Carboniferous-Permian sequences of Ligurian Alps, Sourthern Alps and Sardinia (Italy): a synthesis. Lithos 45:305–328

    Article  Google Scholar 

  • Debon F, Zimmermann JL (1993) Mafic dykes from some plutons of the western Pyrenean Axial Zone (France, Spain): markers of the transition from late-Hercynian to early-Alpine events. Schweiz Mineral Petrogr Mitt 73:421–433

    Google Scholar 

  • Doblas M, Oyarzun R, López-Ruiz J, Cebriá JM, Youbi N, Mahecha V, Lago M, Pocoví A, Cabanis B (1998) Permo-Carboniferous volcanism in Europe and northwest Africa: a superplume exhaust valve in the centre of Pangaea? J African Earth Sci 26:89–99

    Article  Google Scholar 

  • Dostal J, Dupuy C, Carron JP, Dekerneizon ML, Maur RC (1983) Partition coefficients of trace elements: application to volcanic rocks of St Vincent, West-Indies. Geochim Cosmochim Acta 47:525–533

    Article  Google Scholar 

  • Dunn AM, Reynolds PH, Clarke DB, Ugidos JM (1998) A comparison of the age and composition of the Sherburne Dyke, Nova Scotia, and the Messejana Dyke, Spain. Can J Earth Sci 35:1110–1115

    Article  Google Scholar 

  • Eichhorn R, Loth G, Höll R, Finger F, Schermaier A, Kennedy A (2000) Multistage Variscan magmatism in the central Tauern Window (Austria) unveiled by U/Pb SHRIMP zircon data. Contrib Mineral Petrol 139:418–435

    Article  Google Scholar 

  • Ernst RE, Buchan KL (1997) Giant radiating dyke swarms: their use in identifying pre-Mesozoic large igneous provinces and mantle plumes. In: Mahoney JJ, Coffin MF (eds) Large igneous provinces. Continental, oceanic, and planetary flood volcanism. AGU Geophysical Monograph 100, pp 297–333

  • Fernández Suárez J, Arenas R, Jeffries TE, Whitehouse MJ, Villaseca C (2006) A U-Pb study of zircons from a lower crustal granulite xenolith of the Spanish Central system: a record of Iberian lithospheric evolution from the Neoproterozoic to the Triassic. J Geol 114:471–483

    Article  Google Scholar 

  • Fernández M, Marzán I, Correia A, Ramalho E (1998) Heat flow, heat production, and lithospheric thermal regimen in the Iberian Peninsula. Tectonophysics 291:29–53

    Article  Google Scholar 

  • Foley SF (1992) Petrological characterization of the source components of potassic magmas: geochemical and experimental constraints. Lithos 28:187–204

    Article  Google Scholar 

  • Foley SF, Venturelli G, Green DH, Toscani L (1987) The ultrapotassic rocks; characteristics, classification, and constraints for petrogenetic models. Earth-Sci Rev 24:81–134

    Article  Google Scholar 

  • Foley SF, Jackson SE, Fryer BJ, Greenough JD, Jenner GA (1996) Trace element partition coefficients for clinopyroxene and phlogopite in an alkaline lamprophyre from Newfoundland by LAM-ICP-MS. Geochim Cosmochim Acta 60:629–638

    Article  Google Scholar 

  • Franke W (1989) Variscan plate tectonics in central Europe: current ideas and open questions. Tectonophysics 169:221–228

    Article  Google Scholar 

  • Frey FA, Green DH, Roy SD (1978) Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilitites from south eastern Australia utilizing geochemical and experimental petrological data. J Petrol 19:463–513

    Google Scholar 

  • Galindo C, Huertas MJ, Casquet C (1994) Cronología Rb-Sr y K-Ar de diques de la Sierra de Guadarrama (Sistema Central Español). Geogaceta 16:23–26

    Google Scholar 

  • Gardien V, Paquette JL (2004) Ion microprobe and ID-TIMS U-Pb dating on zincon grains from leg 173 amphibolites: evidence for Permian magmatism on the West Iberian margin. Terra Nova 16:226–231

    Article  Google Scholar 

  • Govindaraju K (1994) Compilation of working values and sample description for 383 geostandards. Geostand Newslett 18:1–158

    Google Scholar 

  • Green TH (1995) Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chem Geol 120:347–359

    Article  Google Scholar 

  • Gutiérrez Marco JC, San José MA, Pieren AP (1990) Central-Iberian Zone. Post-Cambrian Paleozoic stratigraphy. In: Dallmeyer RD, Martínez García E (eds) Pre-Mesozoic geology of Iberia. Springer, Berlín, pp 160–171

    Google Scholar 

  • Hart SR, Dunn T (1993) Experimental cpx/melt partitioning of 24 trace elements. Contrib Mineral Petrol 113:1–8

    Article  Google Scholar 

  • Hawkesworth CJ, Kempton PD, Rogers NW, Ellam RM, van Calsteren PW (1990) Continental mantle lithosphere, and shallow level enrichment processes in the earth’s mantle. Earth Planet Sci Lett 96:256–268

    Article  Google Scholar 

  • Heeremans M, Faleide JI, Larsen BT (2004) Late Carboniferous-Permian of NW Europe: an introduction to a new regional map. In: Wilson M, Neumann ER, Davies GR, Timmerman MJ, Heeremans M, Larsen B (eds) Permo-Carboniferous magmatism and rifting in Europe. Geol Soc London Spec Publ, vol 223, London, pp 75–88

  • Ionov DA, Griffin WL, O’Reilly SY (1997) Volatile-bearing minerals and lithophile trace elements in the upper mantle. Chem Geol 141:153–184

    Article  Google Scholar 

  • Irving AJ, Frey FA (1984) Trace element abundances in megacrysts and their host basalts; constraints on partition coefficients and megacryst genesis. Geochim Cosmochim Acta 48:1201–1221

    Article  Google Scholar 

  • Irving E (1977) Drift of the major continental blocks since the Devonian. Nature 270:304–309

    Article  Google Scholar 

  • Kirstein LA, Dunai T, Davies G, Upton BJ, Nikogosian IK (2004) Evidence of heterogeneous mantle beneath Scotland during the Permo-Carboniferous from helium isotopes. In: Wilson M, Neumann ER, Davies GR, Timmerman MJ, Heeremans M, Larsen B (eds) Permo-Carboniferous magmatism and rifting in Europe. Geol Soc London Spec Publ, vol 223, London, pp 243–258

  • Kirstein LA, Davies GR, Heeremans M (2006) The petrogenesis of Carboniferous-Permian dyke and sill intrusions across northern Europe. Contrib Mineral Petrol 152:721–742

    Article  Google Scholar 

  • Lago M, Arranz E, Pocoví A, Galé C, Gil-Imaz A (2004) Permian magmatism and basin dynamics in the southern Pyrenees: a record of the transition from late Variscan transtension to early Alpine extension. In: Wilson M, Neumann ER, Davies GR, Timmerman MJ, Heeremans M, Larsen B (eds) Permo-Carboniferous magmatism and rifting in Europe. Geol Soc London Spec Publ, vol 223, London, pp 439–464

  • Lago M, Gil A, Arranz E, Galé C, Pocoví A (2005) Magmatism in the intracratonic Central Iberian basins during the Permian: Palaeoenvironmental consequences. Palaeo 229:83–103

    Article  Google Scholar 

  • LaTourrette T, Hervig RL, Holloway JR (1995) Trace element partitioning between amphibole, phlogopite, and basanite melt. Earth Planet Sci Lett 135:13–30

    Article  Google Scholar 

  • Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino JA, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Youzhi G (1997) Nomenclature of amphiboles; report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Can Mineral 35:219–246

    Google Scholar 

  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27:745–750

    Google Scholar 

  • Le Maitre RW, Streckeisen A, Zanettin B, Le Bas MJ, Bonin B, Bateman P, Bellieni G, Dudek A, Efremova S, Keller J, Lameyre J, Sabine PA, Schmid R, Sorensen H, Woolley AR (2002) Igneous rocks: a classification and glossary of terms. Cambridge University Press, Cambridge, pp 236

    Google Scholar 

  • Matsui Y, Onuma N, Nagasawa H, Higuchi H, Banno S (1977) Crystal structure control in trace element partition between crystal and magma. Tectonics 100:315–324

    Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • McHone JG (2000) Non-plume magmatism and rifting during the opening of the central Atlantic Ocean. Tectonophysics 316:287–296

    Article  Google Scholar 

  • McKenzie D (1989) Some remarks on the movement of small melt fractions in the mantle. Earth Planet Sci Lett 95:53–72

    Article  Google Scholar 

  • McKenzie D, O’Nions RK (1991) Partial melt distributions from inversion of rare earth element concentrations. J Petrol 32:1021–1091

    Google Scholar 

  • Monaghan AA, Pringle MS (2004) 40Ar/39Ar geochronology of Carboniferous-Permian volcanism in the Midland Valley, Scotland. In: Wilson M, Neumann ER, Davies GR, Timmerman MJ, Heeremans M, Larsen B (eds) Permo-Carboniferous magmatism and rifting in Europe. Geol Soc London Spec Publ, vol 223, London, pp 219–241

  • Monjoie P (2004) The Mont Collon mafic complex (Austroalpine Dent Blanche nappe). Doctoral Thesis, University of Lausanne, pp 163

  • Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi G (1988) Nomenclature of pyroxenes. Am Mineral 73:1123–1133

    Google Scholar 

  • Muttoni G, Kent DV, Garzanti E, Brack P, Abrahamsen N, Gaetani M (2003) Early Permian Pangea ‘B’ to Late Permian Pangea ‘A’. Earth Planet Sci Lett 215:379–394

    Article  Google Scholar 

  • Navon O, Stolper E (1987) Geochemical consequences of melt percolation; the upper mantle as a chromatographic column. J Geol 95:285–307

    Article  Google Scholar 

  • Neumann ER, Wilson M, Heeremans M, Spencer EA, Obst K, Timmerman MJ, Kirstein L (2004) Carboniferous–Permian rifting and magmatism in southern Scandinavia, the North Sea and northern Germany: a review. In: Wilson M, Neumann ER, Davies GR, Timmerman MJ, Heeremans M, Larsen B (eds) Permo-Carboniferous magmatism and rifting in Europe. Geol Soc London Spec Publ, vol 223, London, pp 11–40

  • Nickel KG (1986) Phase equilibria in the system SiO2–MgO–Al2O3–CaO–Cr2O3 (SMACCr) and their bearing on spinel/garnet lherzolite relationships. Neues Jahrb Mineral Abh 155:259–287

    Google Scholar 

  • Obst K, Solyom Z, Johansson L (2004) Permo-Carboniferous extension-related magmatism at the SW margin of the Fennoscandian Shield. In: Wilson M, Neumann ER, Davies GR, Timmerman MJ, Heeremans M, Larsen B (eds) Permo-Carboniferous magmatism and rifting in Europe. Geol Soc London Spec Publ, vol 223, London, pp 259–288

  • Orejana D, Villaseca C (2008) Heterogeneous metasomatism in cumulate xenoliths from the Spanish Central System: implications on percolative fractional crystallization of lamprophyric melts. In: Coltorti M, Gregoire M (eds) Metasomatism in oceanic and continental lithospheric mantle. Geol Soc London Spec Publ, vol 293, London, pp 101–120

  • Orejana D, Villaseca C, Billström K (2005) A PREMA asthenospheric component for the Permian alkaline dykes of the Spanish Central System. Geochim Cosmochim Acta 69(Supp 1):A855

    Google Scholar 

  • Orejana D, Villaseca C, Paterson BA (2006) Geochemistry of pyroxenitic and hornblenditic xenoliths in alkaline lamprophyres from the Spanish Central System. Lithos 86:167–196

    Article  Google Scholar 

  • Orejana D, Villaseca C, Paterson BA (2007) Geochemistry of mafic phenocrysts from alkaline lamprophyres of the Spanish Central System: implications on crystal fractionation, magma mixing and xenoliths entrapment within deep magma chambers. Eur J Mineral 19:817–832

    Article  Google Scholar 

  • Oyarzun R, Doblas M, López-Ruiz J, Cebriá JM (1997) Opening of the central Atlantic and asymmetric mantle upwelling phenomena: implications for long-lived magmatism in western North Africa and Europe. Geology 25:727–730

    Article  Google Scholar 

  • Peacock SM (1990) Fluid processes in subduction zones. Science 248:329–337

    Article  Google Scholar 

  • Perini G, Cebriá JM, López-Ruiz JM, Doblas M (2004) Permo-Carboniferous magmatism in the variscan belt of Spain and France: implications on mantle sources. In: Wilson M, Neumann ER, Davies GR, Timmerman MJ, Heeremans M, Larsen B (eds) Permo-Carboniferous magmatism and rifting in Europe. Geol Soc London Spec Publ, vol 223, London, pp 415–438

  • Portugal-Ferreira M, Macedo CR (1977) Actividade basaltica Permico-Liassica no territorio portugues; uma achega para a datacao. Permo-Liassic basaltic activity in Portugal; preliminary dating. Mem Not Publ Museo Lab Min Geol Univ Coimbra 83:39–52

    Google Scholar 

  • Ringwood AE (1970) Petrogenesis of Apollo 11 basalts and implications for lunar origin. J Geoph Res 75:6453–6479

    Article  Google Scholar 

  • Rock NMS (1991) Lamprophyres. Blackie, Glasgow, pp 285

  • Rottura A, Bargossi GM, Caggianelli A, Del Moro A, Visona D, Tranne CA (1998) Origin and significance of the Permian high-K calc-alkaline magmatism in the central-eastern Southern Alps, Italy. Lithos 45:329–348

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry 3. The crust. Elsevier, Pergamon, Oxford, pp 1–64

  • Scarrow JH, Bea F, Montero P, Molina JF, Vaughan APM (2006) A precise late Permian 40Ar/39Ar age for Central Iberian camptonitic lamprophyres. Geol Acta 4:451–459

    Google Scholar 

  • Stemmerik L, Ineson JR, Mitchell JG (2000) Stratigraphy of the Rotliegend Group in the Danish part of the northern Permian Basin, North Sea. J Geol Soc Lond 157:1127–1136

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In: Saunders AD, Norrey MJ (eds) Magmatism in ocean basins. Blackwell, Geol Soc Spec Publ, vol 42, Oxford, pp 313–345

  • Taura H, Yurimoto H, Kurita K, Sueno S (1998) Pressure dependence on partition coefficients for trace elements between olivine and the coexisting melts. Phys Chem Earth 25:469–484

    Google Scholar 

  • Tejero R, Ruiz J (2002) Thermal and mechanical structure of the central Iberian Peninsula lithosphere. Tectonophysics 350:49–62

    Article  Google Scholar 

  • Tiepolo M, Vannucci R, Oberti R, Foley SF, Bottazzi P, Zanetti A (2000) Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite: crystal–chemical constraints and implications for natural systems. Earth Planet Sci Lett 176:185–201

    Article  Google Scholar 

  • Traversa G, Ronca S, Del Moro A, Pasquali C, Buraglini N, Barabino G (2003) Late to post-Hercynian dyke activity in the Sardinia-Corsica domain: a transition from orogenic calc-alkaline to anorogenic alkaline magmatism. Boll Soc Geol It Vol Spec 2:131–152

    Google Scholar 

  • Ubanell AG (1981) Significado tectónico de los principales sistemas de diques en un sector del Sistema Central Español. Cuad Geol Iber 7:607–622

    Google Scholar 

  • Upton BGJ, Stephenson D, Smedley PM, Wallis SM, Fitton JG (2004) Carboniferous and Permian magmatism in Scotland. In: Wilson M, Neumann ER, Davies GR, Timmerman MJ, Heeremans M, Larsen B (eds) Permo-Carboniferous magmatism and rifting in Europe. Geol Soc London Spec Publ, vol 223, London, pp 195–218

  • Villaseca C, Herreros V (2000) A sustained felsic magmatic system: the Hercynian granitic batholith of the Spanish Central System. Edinburgh Geol Soc Trans Earth Sci 91:207–219

    Google Scholar 

  • Villaseca C, Barbero L, Reyes J, Santos Zalduegui JF (1998a) Nuevos datos petrológicos, geocronología (Rb–Sr) y geoquímica isotópica (Sr, Nd) del plutón de Ventosilla (Sierra de Guadarrama, Sistema Central Español). Geogaceta 23:169–172

    Google Scholar 

  • Villaseca C, Barbero L, Rogers G (1998b) Crustal origin of Hercynian peraluminous granitic batholiths of central Spain: petrological, geochemical and isotopic (Sr, Nd) arguments. Lithos 43:55–79

    Article  Google Scholar 

  • Villaseca C, Downes H, Pin C, Barbero L (1999) Nature and composition of the lower continental crust in central Spain and the granulite–granite linkage: inferences from granulitic xenoliths. J Petrol 40:1465–1496

    Article  Google Scholar 

  • Villaseca C, Orejana D, Pin C, López García JA, Andonaegui P (2004) Le magmatisme basique hercynien et post-hercynien du Système Central Espagnol: essai de caractèrisation des sources manteliques. C R Géosci 336:877–888

    Article  Google Scholar 

  • White R, McKenzie D (1989) Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J Geoph Res 94:7685–7729

    Article  Google Scholar 

  • Wilson M (1989) Igneous petrogenesis: a global tectonic approach. Unwin Hyman, Boston, pp 466

    Google Scholar 

  • Wilson M (1997) Thermal evolution of the central Atlantic passive margins: continental break-up above a Mesozoic super-plume. J Geol Soc Lond 154:491–495

    Article  Google Scholar 

  • Wilson M, Neumann ER, Davies GR, Timmerman MJ, Heeremans M, Larsen BT (2004) Permo-Carboniferous magmatism and rifting in Europe. Geol Soc London Spec Publ, vol 223, London, pp 498

  • Zanetti A, Tiepolo M, Oberti R, Vannucci R (2004) Trace-element partitioning in olivine: modelling of a complete data set from a synthetic hydrous basanite melt. Lithos 75:39–54

    Article  Google Scholar 

  • Zeck HP, Wingate MTD, Pooley G (2007) Ion microprobe U–Pb zircon geochronology of a late tectonic granitic–gabbroic rock complex within the Hercynian Iberian belt. Geol Mag 144:157–177

    Article  Google Scholar 

  • Ziegler PA (1993) Late Palaeozoic-Early Mesozoic plate reorganization: evolution and demise of the Variscan fold belt. In: Von Raumer JF, Neubauer F (eds) Pre-Mesozoic geology in the Alps. Springer, Berlin, pp 203–216

    Google Scholar 

  • Ziegler PA, Schumacher ME, Dézes P, vam Wees J-D, Cloetingh S (2004) Post-Variscan evolution of the lithosphere in the Rhine Graben area: constraints from subsidence modelling. In: Wilson M, Neumann ER, Davies GR, Timmerman MJ, Heeremans M, Larsen BT (eds) Permo-Carboniferous magmatism and rifting in Europe. Geol Soc London Spec Publ, vol 223, London, pp 289–317

  • Zindler A, Hart SR (1986) Chemical geodynamics. Ann Rev Earth Planet Sci 14:493–571

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge Alfredo Fernández Larios and José González del Tánago for their assistance with the electron microprobe analyses in the CAI of Microscopía Electrónica (UCM). We also thank Rex Taylor and Tyna Hayes from the Southampton Oceanography centre, for their help in analysing samples by TIMS. The Access to Research Infrastructure action of the Improving Human Potential Programme, supported by the European Community, has let us carry out the laser mineral analyses at the University of Bristol, the Pb isotope analyses at the Swedish Museum of Natural History and part of the Sr–Nd isotope analyses at the National Oceanography Centre of Southampton. This work is included in the objectives of, and supported by, the CGL2004-02515 project of the Ministerio de Educación y Ciencia of Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Orejana.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(TIF 8993 kb)

e-Table 1. Trace element composititon of external standards used for whole rock and LA-ICP-MS analyses (XLS 22 kb)

e-Table 2. Major element composition of clinopyroxenes from the SCS alkaline lamprophyres and diabases (XLS 80 kb)

410_2008_297_MOESM3_ESM.xls

eTable 3. Trace element composition of clinopyroxene, amphibole and phlogopite phenocrysts from SCS alkaline lamprophyres and diabases (XLS 23 kb)

e-Table 4. Major element composition of amphibole from SCS alkaline lamprophyres and diabases (XLS 39 kb)

410_2008_297_MOESM5_ESM.xls

e-Table 5. Major element composition of spinel group minerals, ilmenite, apatite and olivine from SCS alkaline lamprophyres and diabases (XLS 46 kb)

e-Table 6. Major element composition of micas from SCS alkaline lamprophyres and diabases (XLS 29 kb)

e-Table 7. Major element composition of feldspar from SCS alkaline lamprophyres and diabases (XLS 41 kb)

(TIF 11189 kb)

(TIF 6681 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orejana, D., Villaseca, C., Billström, K. et al. Petrogenesis of Permian alkaline lamprophyres and diabases from the Spanish Central System and their geodynamic context within western Europe. Contrib Mineral Petrol 156, 477–500 (2008). https://doi.org/10.1007/s00410-008-0297-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-008-0297-x

Keywords

Navigation