Skip to main content

Advertisement

Log in

Quantitative textural analysis of packings of elongate crystals

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The spatial distribution of grains in a solidifying igneous rock controls the physical properties of the crystal mush, and in turn is controlled by the rate of crystal growth and accumulation. A predominant non-spherical habit for igneous minerals brings into question the use of spherical particles in reference packings used for quantification of spatial distribution. Furthermore, variations of crystal clustering/ordering with length scale require spatial statistics which take into account the distribution of particles beyond nearest neighbours. Using random close packings of spherocylinders, we demonstrate the importance of aspect ratio for the aggregation index (usually known as R) and show that packings of spherical particles have more structure than packings of rods. The spatial distribution functions demonstrate that the plagioclase grains in the colonnade from the Holyoke basalt are clustered on a length scale of 0.5 mm. Understanding the controls on grain spatial distribution in igneous rocks will depend on the application of these techniques to well-understood environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aste T, Saadatfar M, Senden TJ (2005) Geometrical structure of disordered sphere packings. Phys Rev E 71:061302. doi:10.1103/PhysRevE.71.061302

    Article  Google Scholar 

  • Baddeley A, Jensen EBV (2004) Stereology for statisticians. Chapman & Hall/CRC, Boca Raton. ISBN-10-1584884053

  • Baddeley A, Turner R (2005) Spatstat: an R package for analyzing spatial point patterns. J Stat Softw 12:1–42. URL http://www.jstatsoft.org, ISSN 1548-7660

    Google Scholar 

  • Berryman JG, Blair SC (1986) Use of digital image analysis to estimate fluid permeability of porous materials: application of two-point correlation functions. J Appl Phys 60:1930–1938. doi:10.1063/1.337245

    Article  Google Scholar 

  • Bezrukov A, Stoyan D, Bargiel M (2001) Spatial statistics for simulated packings of spheres. Image Anal Stereol 20:203–206

    Google Scholar 

  • Blair SC, Berge PA, Berryman JG (1996) Using two-point correlation functions to characterize microgeometry and estimate permeabilities of sandstones and porous glass. J Geophys Res 101:20359–20375. doi:10.1029/96JB00879

    Article  Google Scholar 

  • Blumenfeld R, Edwards SF, Ball RC (2005) Granular matter and the marginal rigidity state. J Phys Condens Matter 17:S2481–S2487. doi:10.1088/0953-8984/17/24/007

    Article  Google Scholar 

  • Boorman S, Boudreau A, Kruger FJ (2004) The Lower Zone-Critical Zone transition of the Bushveld complex: a quantitative textural study. J Petrol 45:1209–1235. doi:10.1093/petrology/egh011

    Article  Google Scholar 

  • Campbell IH (1978) Some problems with the cumulus theory. Lithos 11:311–323. doi:10.1016/0024-4937(78)90038-5

    Article  Google Scholar 

  • Carlson WD (1989) The significance of intergranular diffusion to the mechanisms and kinetics of porphyroblast crystallization. Contrib Mineral Petrol 103:1–24. doi:10.1007/BF00371361

    Article  Google Scholar 

  • Clark PJ, Evans FC (1954) Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35:445–453

    Article  Google Scholar 

  • Daniel CG, Spear FS (1999) The clustered nucleation and growth processes of garnet in regional metamorphic rocks from north-west Connecticut, USA. J Metamorphic Geol 17:503–520

    Article  Google Scholar 

  • Denison C, Carlson WD, Ketcham RA (1997) Three-dimensional quantitative textural analysis of metamorphic rocks using high-resolution computed X-ray tomography: part I. Methods and techniques. J Metamorphic Geol 15:29–44. doi:10.1111/j.1525-1314.1997.00006.x

    Article  Google Scholar 

  • Dixon PM (2002a) Nearest neighbor methods. In: El-Shaarawi AH, Piegorsch WW (eds) Encyclopedia of environmetrics. Wiley, UK. doi:10.1002/9780470057339.van007

  • Dixon PM (2002b) Ripley’s K function. In: El-Shaarawi AH, Piegorsch WW (eds) Encyclopedia of environmetrics. Wiley, UK. doi:10.1002/9780470057339.var046

  • Donaldson CH (1976) An experimental investigation of olivine morphology. Contrib Mineral Petrol 57:187–213. doi:10.1007/BF00405225

    Article  Google Scholar 

  • Donev A, Cisse I, Sachs D, Variano EA, Stillinger FH, Connelly R, Torquato S, Chaikin PM (2004) Improving the density of jammed disordered packings using ellipsoids. Science 303:990–993. doi:10.1126/science.1093010

    Article  Google Scholar 

  • Dunbar NW, Jacobs GK, Naney MT (1995) Crystallization processes in an artificial magma: variations in crystal shape, growth rate and composition with melt cooling history. Contrib Mineral Petrol 120:412–425. doi:10.1007/s004100050085

    Article  Google Scholar 

  • Finney JL (1970) Packings and the structure of simple liquids. I. The geometry of random close packing. Proc R Soc Lond A 319:479–493

    Article  Google Scholar 

  • Gaillot P, Darrozes J, de Saint Blanquat M, Ouillon G (1997) The normalised optimised anisotropic wavelet coefficient (NOAWC) method: an image processing tool for multi-scale analysis of rock fabric. Geophys Res Lett 24:1819–1822

    Article  Google Scholar 

  • Higgins MD (2006) Quantitative textural measurements in igneous and metamorphic petrology. Cambridge University Press, Cambridge. ISBN-13: 9780521847827. doi:10.2277/0521847826

  • Hirsch DM (2008) Controls on porphyroblast size along a regional metamorphic field gradient. Contrib Mineral Petrol 155:401–415. doi:10.1007/s00410-007-0248-y

    Article  Google Scholar 

  • Hirsch DM, Ketcham RA, Carlson WD (2000) An evaluation of spatial correlation functions in textural analysis of metamorphic rocks. Geol Mat Res 2:1–42

    Google Scholar 

  • Irvine TN (1987) Layering and related structures in the Duke Island and Skaergaard intrusions: similarities, differences, and origins. In: Parsons I (ed) Origins of Igneous Layering. Reidel, Dordrecht, pp 185–245

  • Jerram DA, Cheadle MJ (2000) On the cluster analysis of grains and crystals in rocks. Am Mineral 85:47–67

    Google Scholar 

  • Jerram DA, Higgins MD (2007) 3D analysis of rock textures: quantifying igneous microstructures. Elements 3:239–245. doi:10.2113/gselements.3.4.239

    Article  Google Scholar 

  • Jerram DA, Cheadle MJ, Hunter RH, Elliott MT (1996) The spatial distribution of grains and crystals in rocks. Contrib Mineral Petrol 125:60–74. doi:10.1007/s004100050206

    Article  Google Scholar 

  • Jerram DA, Cheadle MJ, Philpotts AR (2003) Quantifying the building blocks of igneous rocks: are clustered crystal frameworks the foundation? J Petrol 44:2033–2051. doi:10.1093/petrology/egg069

    Article  Google Scholar 

  • Ketcham RA, Meth C, Hirsch DM, Carlson WD (2005) Improved methods for quantitative analysis of three-dimensional porphyroblastic textures. Geosphere 1:42–59. doi:10.1130/GES00002.1

    Article  Google Scholar 

  • Kretz R (1966) Grain-size distribution for certain metamorphic minerals in relation to nucleation and growth. J Geol 74:147–173

    Google Scholar 

  • Kretz R (1969) On the spatial distribution of crystals in rocks. Lithos 2:39–65. doi:10.1016/S0024-4937(69)80005-8

    Article  Google Scholar 

  • Kretz R (2006) Shape, size, spatial distribution and composition of garnet crystals in highly deformed gneiss of the Otter Lake area, Québec, and a model for garnet crystallization. J Metamorphic Geol 24:431–449. doi:10.1111/j.1525-1314.2006.00647.x

    Article  Google Scholar 

  • Lochmann K, Oger L, Stoyan D (2006) Statistical analysis of random sphere packings with variable radius distribution. Solid State Sci 8:1397–1413. doi:10.1016/j.solidstatesciences.2006.07.011

    Article  Google Scholar 

  • Maaløe S (1987) The origin of rhythmic layering. Mineral Mag 42:337–345

    Article  Google Scholar 

  • Marsh BD (1996) Solidification fronts and magmatic evolution. Mineral Mag 60:5–40

    Article  Google Scholar 

  • Mattfeldt T (2005) Explorative statistical analysis of planar point processes in microscopy. J Microsc 220:131–139. doi:10.1111/j.1365-2818.2005.01521.x

    Article  Google Scholar 

  • McBirney AR, Nicolas A (1997) The Skaergaard layered series. Part II. Magmatic flow and dynamic layering. J Petrol 38:569–580

    Article  Google Scholar 

  • McKenzie D (1984) The generation and compaction of partially molten rock. J Petrol 25:713–765. doi:10.1093/petrology/25.3.713

    Google Scholar 

  • Mock A, Jerram DA, Breitkreuz C (2003) Using quantitative textural analysis to understand the emplacement of shallow-level rhyolitic laccoliths—a case study from the Halle Volcanic Complex, Germany. J Petrol 44:833–849. doi:10.1093/petrology/44.5.833

    Article  Google Scholar 

  • Morishita R (1998) Statistical properties of ideal rock textures: relationship between crystal size distribution and spatial correlation of minerals. Math Geol 30:409–434

    Article  Google Scholar 

  • Morishita R, Obata M (1995) A new statistical description of the spatial distribution of minerals in rocks. J Geol 103:232–240

    Google Scholar 

  • O’Driscoll B, Donaldson CH, Troll VR, Jerram DA, Emeleus CH (2007) An origin for harrisitic and granular olivine in the Rum layered suite, NW Scotland: a crystal size distribution study. J Petrol 48:253–270. doi:10.1093/petrology/egl059

    Article  Google Scholar 

  • Philipse AP (1996a) The random contact equation and its implications for (colloidal) rods in packings, suspensions, and anisotropic powders. Langmuir 12:1127–1133. doi:10.1021/la950671o

    Article  Google Scholar 

  • Philipse AP (1996b) The random contact equation and its implications for (colloidal) rods in packings, suspensions, and anisotropic powders (correction). Langmuir 12:5971. doi:10.1021/la960869o

    Article  Google Scholar 

  • Philpotts AR, Dickson LD (2000) The formation of plagioclase chains during convective transfer in basaltic magma. Nature 406:59–61

    Article  Google Scholar 

  • Philpotts AR, Shi J, Brustman C (1998) Role of plagioclase crystal chains in the differentiation of partly crystallized basaltic magma. Nature 395:343–346. doi:10.1038/26404

    Article  Google Scholar 

  • Pommerening A, Stoyan D (2006) Edge-correction needs in estimating indices of spatial forest structure. Can J For Res 36:1723–1739. doi:10.1139/X06-060

    Article  Google Scholar 

  • Raeburn SP (1996) New methods in quantitative metamorphic petrology: 1. In situ determinations of iron valence in minerals; 2. The application of 3-D textural analysis to the study of crystallization kinetics. Ph.D. Thesis, Pennsylvania State University

  • Rasband W (1997-2007) ImageJ. U. S. National Institutes of Health, Bethesda. URL http://rsb.info.nih.gov/ij/

  • R Development Core Team (2007) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. URL http://www.R-project.org, ISBN 3-900051-07-0

  • Ripley BD (1976) The second-order analysis of stationary point processes. J Appl Probab 13:255–266

    Article  Google Scholar 

  • Ripley BD (1977) Modelling spatial patterns. J R Stat Soc B 39:172–192

    Google Scholar 

  • Shirley DN (1986) Compaction of igneous cumulates. J Geol 94:795–809

    Article  Google Scholar 

  • Stoyan D (2002) Simulation and characterization of random systems of hard particles. Image Anal Stereol 21:S41–S48

    Google Scholar 

  • Stoyan D, Penttinen A (2000) Recent applications of point process methods in forestry statistics. Stat Sci 15:61–78

    Article  Google Scholar 

  • Stoyan D, Stoyan H (1994) Fractals, random shapes and point fields: methods of geometrical statistics. Wiley, UK

  • Stoyan D, Kendall WS, Mecke J (1995) Stochastic geometry and its applications. Wiley, UK

  • Swanson SE, Fenn PM (1986) Quartz crystallisation in igneous rocks. Am Mineral 71:331–342

    Google Scholar 

  • Tepley FJI, Davidson JP (2003) Mineral-scale Sr-isotope constraints on magma evolution and chamber dynamics in the Rum layered intrusion, Scotland. Contrib Mineral Petrol 145:628–641. doi:10.1007/s00410-003-0481-y

    Article  Google Scholar 

  • Torquato S, Truskett TM, Debenedetti PG (2000) Is random close packing of spheres well defined? Phys Rev Lett 84:2064–2067. doi:10.1103/PhysRevLett.84.2064

    Article  Google Scholar 

  • Wager LR, Brown GM, Wadsworth WJ (1960) Types of igneous cumulates. J Petrol 1:73–85. doi:10.1093/petrology/1.1.73

    Google Scholar 

  • Weitz DA (2004) Packing in the spheres. Science 303:968–969. doi:10.1126/science.1094581

    Article  Google Scholar 

  • Williams SR, Philipse AP (2003) Random packings of spheres and spherocylinders simulated by mechanical contraction. Phys Rev E 67:051301. doi:10.1103/PhysRevE.67.051301

    Article  Google Scholar 

  • Wouterse A, Philipse AP (2006) Geometrical cluster ensemble analysis of random sphere packings. J Chem Phys 125:194709. doi:10.1063/1.2390700

    Article  Google Scholar 

  • Wouterse A, Williams SR, Philipse AP (2007) Effect of particle shape on the density and microstructure of random packings. J Phys Condens Matter 19:406215. doi:10.1088/0953-8984/19/40/406215

    Article  Google Scholar 

Download references

Acknowledgments

We are extremely grateful to Dougal Jerram, whose work was the inspiration for this study, for all his help: providing us with the co-ordinates of the Finney sphere packing, the co-ordinates of the RSDL, and the tracing of the Holyoke colonnade. We are also extremely grateful to Alan Wouterse and Albert Philipse for providing us with the co-ordinates of their spherocylinder packings. We thank Madeleine Humphreys and Rachel Sides for helpful discussions, and Dougal Jerram and Mike Cheadle for their constructive reviews. John Rudge was supported by a Junior Research Fellowship at Trinity College, Cambridge. Graham Smith was supported by a NERC studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Rudge.

Additional information

Communicated by J. Blundy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudge, J.F., Holness, M.B. & Smith, G.C. Quantitative textural analysis of packings of elongate crystals. Contrib Mineral Petrol 156, 413–429 (2008). https://doi.org/10.1007/s00410-008-0293-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-008-0293-1

Keywords

Navigation