Contributions to Mineralogy and Petrology

, Volume 156, Issue 2, pp 161–175 | Cite as

Experimental effects of pressure and fluorine on apatite saturation in mafic magmas, with reference to layered intrusions and massif anorthosites

Original Paper

Abstract

Apatite is a cumulate phase in the upper parts of some mafic layered intrusions and anorthositic complexes. We investigated the effect of pressure and fluorine on apatite saturation in mafic magmas to better understand under which conditions this mineral crystallizes. Apatite saturation gives information about the formation of silicate rocks, and is of interest in explaining the formation of apatite–oxide-rich rocks (e.g. nelsonites comprising approximately, one-third apatite and two-third Fe–Ti oxide). Two models of formation are proposed for this rock type: crystal fractionation followed by accumulation of apatite and Fe–Ti oxides and liquid immiscibility. New experiments carried out with mafic compositions at 500 MPa confirm that the most important variables on phosphate saturation are SiO2 and CaO. Fluorine addition leads to apatite saturation at lower SiO2 and higher CaO concentrations. Comparison of our results with those of previous experimental studies on liquid–liquid immiscibility at upper-to-mid-crustal conditions allows us to investigate the relative importance of apatite saturation versus liquid–liquid immiscibility in the petrogenesis of nelsonites and similar rocks. The liquid line of descent of three natural examples studied (the Sept-Îles intrusive suite, the anorthositic Complex of the Lac-St-Jean and the Skaergaard layered intrusion) do not cross the liquid–liquid immiscibility field before they reach apatite saturation. Thus, the apatite–oxide-rich rock associated with these three intrusive suites are best explained by crystal fractionation followed by accumulation of apatite and Fe–Ti oxides.

Keywords

Apatite saturation Silicate magmas Fluorine Pressure Apatite-rich-rocks Layered intrusions Massif type anorthosites 

References

  1. Ashwal LD (1993) Anorthosites. Springer, BerlinGoogle Scholar
  2. Baker DR (2004) Piston–cylinder calibration at 400 to 500 MPa: a comparison of using water solubility in albite melt and NaCl melting. Am Mineral 89(10):1553–1556Google Scholar
  3. Barnes S-J, Maier WD, Ashwal LD (2004) Platinum-group element distribution in the Main Zone and Upper Zone of the Bushveld Complex, South Africa. Chem Geol 208(1–4):293–317CrossRefGoogle Scholar
  4. Bea F, Fershtater G, Corretge LG (1992) The geochemistry of phosphorus in granite rocks and the effect of aluminum. Lithos 29(1–2):43–56CrossRefGoogle Scholar
  5. Bogaerts M, Schmidt MW (2006) Experiments on silicate melt immiscibility in the system Fe2SiO4–KAlSi3O8–SiO2–CaO–MgO–TiO2–P2O5 and implications for natural magmas. Contrib Mineral Petrol 152:257–274CrossRefGoogle Scholar
  6. Boudreau AE (1999) PELE—a version of the MELTS software program for the PC platform. Comput Geosci 25:201–203CrossRefGoogle Scholar
  7. Brooks CK, Nielsen TFD (1978) Early stages in differentiation of Skaergaard magma as revealed by a closely related suite of dike rocks. Lithos 11(1):1–14CrossRefGoogle Scholar
  8. Brooks CK, Nielsen TFD (1990) The differentiation of the Skaergaard intrusion. A discussion of Hunter, R., H. and Sparks, R.,S., J., (Contrib Mineral Petrol 95:451–461). Contrib Mineral Petrol 104:244–247CrossRefGoogle Scholar
  9. Cimon J (1998) L’unité à apatite de rivière des rapides, Complexe de Sept îles. Localisation stratigraphique et facteurs à l’origine de sa formation. Ministère des ressources naturelles. Québec 97(5):1–32Google Scholar
  10. Dolejs D, Baker DR (2005) Thermodynamic modeling of melts in the system Na2O–NaAlO2–SiO2–F2O–1. Geochim Cosmochim Acta 69(23):5537–5556CrossRefGoogle Scholar
  11. Dymek RF, Owens BE (2001) Petrogenesis of apatite-rich rocks (nelsonites and oxide–apatite gabbronorites) associated with massif anorthosites. Econ Geol Bull Soc Econ Geol 96(4):797–815Google Scholar
  12. Eales HV, Cawthorn RG (1996) The Bushveld complex. In: Cawthorn RG (ed) Layered intrusions. Elsevier, Amsterdam, pp 181–229Google Scholar
  13. Emslie RF (1975) Nature and origin of anorthositic suites. Geosci Canada 2(2):99–104Google Scholar
  14. Fredette J (2006) Pétrographie, géochimie et potentiel économique en Fe–Ti–P du secteur de Lac à Paul, Parte Nord de le Suite Anorthositique du Lac-Saint-Jean, Province du Grenville, Québec. In: Sciences de la Terre. Université du Québec à Chicoutimi, Chicoutimi, p 294Google Scholar
  15. Frost BR (1991) Introduction to oxygen fugacity and Its petrologic importance. Rev Mineral 25:1–9Google Scholar
  16. Goldberg SA (1984) Geochemical relationships between anorthosite and associated iron-rich rocks, Laramie Range, Wyoming. Contrib Mineral Petrol 87(4):376–387CrossRefGoogle Scholar
  17. Harrison TM, Watson EB (1984) The behavior of apatite during crustal anatexis—equilibrium and kinetic considerations. Geochim Cosmochim Acta 48(7):1467–1477CrossRefGoogle Scholar
  18. Hess PC (1980) Polymerization model for silicate melts. In: Hargraves RB (ed) Physics of magmatic processes, pp 3–48. Princeton University Press, Englewood CliffsGoogle Scholar
  19. Higgins MD (2005) A new interpretation of the structure of the Sept Iles Intrusive suite, Canada. Lithos 83(3–4):199–213CrossRefGoogle Scholar
  20. Hounsell V (2003) Géochimie des dykes mafiques et composés de la suite intrusives de Sept-Îles, Québec. In: Département des Sciences de la Terre. Université du Québec à Chicoutimi, Chicoutimi, p 48Google Scholar
  21. Hudon P, Jung IH, Baker DR (2004) Effect of pressure on liquid–liquid miscibility gaps: a case study of the systems CaO–SiO2, MgO–SiO2, and CaMgSi2O6–SiO2. J Geophys Res Solid Earth 109(B3)Google Scholar
  22. Hunter RH, Sparks RSJ (1987) The differentiation of the Skaergaard intrusion. Contrib Mineral Petrol 95(4):451–461CrossRefGoogle Scholar
  23. Hunter RH, Sparks RSJ (1990a) The differentiation of the Skaergaard intrusion—reply. Contrib Mineral Petrol 104(2):251–253CrossRefGoogle Scholar
  24. Hunter RH, Sparks RSJ (1990b) The differentiation of the Skaergaard intrusion—reply. Contrib Mineral Petrol 104(2):253–254CrossRefGoogle Scholar
  25. Hunter RH, Sparks RSJ (1990c) The differentiation of the Skaergaard intrusion—reply. Contrib Mineral Petrol 104(2):248–251CrossRefGoogle Scholar
  26. Huntington HD (1979) Kiglapait mineralogy. 1. Apatite, biotite, and volatiles. J Petrol 20(3):625–652Google Scholar
  27. Jakobsen JK, Veksler IV, Tegner C, Brooks CK (2005) Immiscible iron- and silica-rich melts in basalt petrogenesis documented in the Skaergaard intrusion. Geology 33(11):885–888CrossRefGoogle Scholar
  28. McBirney AR, Naslund HR (1990) The differentiation of the Skaergaard intrusion—a discussion. Contrib Mineral Petrol 104(2):235–240CrossRefGoogle Scholar
  29. McLelland J, Ashwal L, Moore L (1994) Composition and petrogenesis of oxide-rich, apatite-rich gabbronorites associated with Proterozoic anorthosite massifs —examples from the Adirondack Mountains, New-York. Contrib Mineral Petrol 116(1–2):225–238CrossRefGoogle Scholar
  30. Morse SA (1980) Kiglapait mineralogy. 2. Fe–Ti oxide minerals and the activities of oxygen and silica. J Petrol 21(4):685–719Google Scholar
  31. Morse SA (1981) Kiglapait Iglapait Geochemistry 4. The major elements. Geochim Cosmochim Acta 45(3):461–479CrossRefGoogle Scholar
  32. Morse SA (1990) The differentiation of the Skaergaard intrusion—discussion. Contrib Mineral Petrol 104(2):240–244CrossRefGoogle Scholar
  33. Mysen BO (2007) The solution behavior of H2O in peralkaline aluminosilicate melts at high pressure with implications for properties of hydrous melts. Geochim Cosmochim Acta 71(7):1820–1834CrossRefGoogle Scholar
  34. Mysen BO, Cody GD (2004) Solubility and solution mechanism of H2O in alkali silicate melts and glasses at high pressure and temperature. Geochim Cosmochim Acta 68(24):5113–5126CrossRefGoogle Scholar
  35. Mysen BO, Cody GD (2005) Solution mechanisms of H2O in depolymerized peralkaline melts. Geochim Cosmochim Acta 69(23):5557–5566CrossRefGoogle Scholar
  36. Mysen BO, Cody GD, Smith A (2004) Solubility mechanisms of fluorine in peralkaline and meta-aluminous silicate glasses and in melts to magmatic temperatures. Geochim Cosmochim Acta 68(12):2745–2769CrossRefGoogle Scholar
  37. Nabil H (2003) Genèse des dépôts de Fe–Ti–P associés aux intrusions litées (exemples: intrusion mafique de Sept-Îles, au Québec; Complexe de Duluth aux États-Unis). In: Département des Sciences de la Terre. Université du Québec à Chicoutimi, Chicoutimi, p 441Google Scholar
  38. Naslund HR (1983) The effect of oxygen fugacity on liquid immiscibility in iron-bearing silicate melts. Am J Sci 283(10):1034–1059CrossRefGoogle Scholar
  39. Philpotts AR (1967) Origin of certain iron–titanium oxide and apatite rocks. Econ Geol 62(3):303–315Google Scholar
  40. Philpotts AR (1982) Compositions of immiscible liquids in volcanic-rocks. Contrib Mineral Petrol 80(3):201–218CrossRefGoogle Scholar
  41. Roedder E (1951) Low temperature liquid immiscibility in the system K2O–FeO–Al2O3–SiO2. Am Mineral 36:282–286Google Scholar
  42. Spandler C, Mavrogenes J, Arculus R (2005) Origin of chromitites in layered intrusions: evidence from chromite–hosted melt inclusions from the Stillwater Complex. Geology 33(11):893–896CrossRefGoogle Scholar
  43. Tegner C (1997) Iron in plagioclase as a monitor of the differentiation of the Skaergaard intrusion. Contrib Mineral Petrol 128(1):45–51CrossRefGoogle Scholar
  44. Tegner C, Cawthorn RG, Kruger FJ (2006) Cyclicity in the Main and Upper Zones of the Bushveld Complex, South Africa: crystallization from a Zoned Magma Sheet. J Petrol:1–23Google Scholar
  45. Tollari N, Toplis MJ, Barnes S-J (2006) Predicting phosphate saturation in silicate magmas: an experimental study of the effects of melt composition and temperature. Geochim Cosmochim Acta 70(6):1518–1536CrossRefGoogle Scholar
  46. Tollari N, Barnes S-J, Cox RA, Nabil H (2008) Trace elements concentrations in apatites from the Intrusive Suite of Sept-Îles, Canada—Implications for the genesis of nelsonites. Chem Geol (accepted with minor revision)Google Scholar
  47. Toplis MJ, Carroll MR (1995) An experimental-study of the influence of oxygen fugacity on Fe–Ti oxide stability, phase-relations, and mineral-melt equilibria in ferro-basaltic systems. J Petrol 36(5):1137–1170Google Scholar
  48. Toplis MJ, Libourel G, Carroll MR (1994) The role of phosphorus in crystallization processes of basalt—an experimental study. Geochim Cosmochim Acta 58(2):797–810CrossRefGoogle Scholar
  49. Von Gruenewaldt G (1993) Ilmenite–apatite enrichments in the Upper Zone of the Bushveld complex: a major titanium-rock phosphate resource. Int Geol Rev 35:987–1000CrossRefGoogle Scholar
  50. Wager LR (1960) The major element variation of the layered series of the Skaergaard Intrusion and a Re-estimation of the average composition of the Hidden Layered Series and of the successive residual magmas. J Petrol 1(3):364Google Scholar
  51. Wager LR, Brown GM (1968) Layered igneous rocks. Oliver and Boyd, EdinburghGoogle Scholar
  52. Watson EB (1979) Apatite saturation in basic to intermediate magmas. Geophys Res Lett 6(12):937–940CrossRefGoogle Scholar
  53. Watson EB (1980) Apatite and phosphorus in mantle source regions—an experimental-study of apatite-melt equilibria at pressures to 25-Kbar. Earth Planet Sci Lett 51(2):322–335CrossRefGoogle Scholar
  54. Weiblen PW, Roedder E (1973) Compositional interrelationships of mare basalts from bulk chemical and melt inclusion studies. Geochim Cosmochim Acta 1(4):681–703Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Département des Sciences AppliquéesUniversité du QuébecChicoutimiCanada
  2. 2.Department of Earth and Planetary Sciences, GEOTOP-UQAM-McGill Research CentreMcGill UniversityMontréalCanada

Personalised recommendations