Skip to main content

Advertisement

Log in

The Ca-Eskola component in eclogitic clinopyroxene as a function of pressure, temperature and bulk composition: an experimental study to 15 GPa with possible implications for the formation of oriented SiO2-inclusions in omphacite

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Experiments have been conducted in the P-T range 2.5–15 GPa and 850–1,500°C using bulk compositions in the systems SiO2–TiO2–Al2O3–Fe2O3–FeO–MnO–MgO–CaO–Na2O–K2O–P2O5 and SiO2–TiO2–Al2O3–MgO–CaO–Na2O to investigate the Ca-Eskola (CaEs Ca0.50.5AlSi2O6) content of clinopyroxene in eclogitic assemblages containing garnet + clinopyroxene + SiO2 ± TiO2 ± kyanite as a function of P, T, and bulk composition. The results show that CaEsss in clinopyroxene increases with increasing T and is strongly bulk composition dependent whereby high CaEs-contents are favoured by bulk compositions with high normative anorthite and low diopside contents. In this study, a maximum of 18 mol% CaEsss was found at 6 GPa and 1,350°C in a kyanite-eclogite assemblage garnet + clinopyroxene + kyanite + rutile + coesite. By comparison, no significant increase in CaEsss with increasing P could be observed. If the formation of oriented SiO2-rods frequently observed in eclogititc clinopyroxenes is due to the retrogressive breakdown of a CaEs-component then these textures are a cooling rather than a decompression phenomenon and are most likely to be found in kyanite-bearing eclogites cooled from temperatures ≥750°C. The presence of clinopyroxene with approx. 4 mol% CaEsss in an experiment conducted at 2.5 GPa/850°C confirms earlier suggestions based on field data that vacancy-rich clinopyroxenes are not necessarily restricted to ultrahigh pressure metamorphic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bakun-Czubarow N (1992) Quartz pseudomorphs after coesite and quartz exsolutions in eclogitic omphacites of the Zlote Mountains in the Sudetes (SW Poland). Arch Mineral 48:3–25

    Google Scholar 

  • Bose K, Ganguly J (1995) Quartz-coesite transition revisited: reversed experimental determination at 500–1200°C and retrieved thermochemical properties. Am Min 80:231–238

    Google Scholar 

  • Brey G, Köhler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378

    Google Scholar 

  • Brunet F, Bonneau V, Irifune T (2006) Complete solid-solution between Na3Al2(PO4)3 and Mg3Al2(SiO4)3 garnets at high pressure. Am Min 91:211–215

    Article  Google Scholar 

  • Bruno M, Compagnoni R, Rubbo M (2001) The ultra-high pressure coronitic and pseudomorphous reactions in a metagranodiorite from the Brossasco-Isasca Unit, Dora-Maira Massif, western Italian Alps: apetrographic study and equilibrium thermodynamic modelling. J Metamorph Geol 19:33–43

    Article  Google Scholar 

  • Bruno M, Compagnoni R, Hirajima T, Rubbo M (2002) Jadeite with the Ca-Eskola molecule from an ultra-high pressure metagranodiorite, Dora-Maira Massif, Western Alps. Contrib Mineral Petrol 142:515–519

    Article  Google Scholar 

  • Carswell DA, Dawson JB, Gibb FGF (1981) Equilibration conditions of upper-mantle eclogites: implications for kyanite-bearing and diamondiferous varieties. Min Mag 44:79–89

    Article  Google Scholar 

  • Dobrzhinetskaya LF, Green HW, Wang S (1996) Alpe Arami: a peridotite massif from depths of more than 300 km. Science 271:1841–1845

    Article  Google Scholar 

  • Dobrzhinetskaya LF, Schweinehage R, Massonne HJ, Green HW (2002) Silica precipitates in omphacite from eclogite at Alpe Arami, Switzerland: evidence for deep subduction. J Metam Geol 20:481–492

    Article  Google Scholar 

  • Edgar AD, Mottana A, Macrae ND (1969) The chemistry and cell parameters of omphacites and related pyroxenes. Am Min 37:61–74

    Google Scholar 

  • Galazka-Friedmann J, Bauminger ER, Bakun-Czubarow N (1998) Determination of iron oxidation state in omphacites applied to geothermometry of Sudetic eclogites. Hyperfine Interact 112:223–226

    Article  Google Scholar 

  • Gasparik T (1986) Experimental study of subsolidus phase relations and mixing properties of clinopyroxene in the silica-saturated system CaO-MgO-Al2O3-SiO2. Am Min 71:686–693

    Google Scholar 

  • Gayk T, Kleinschrodt R, Langosch A, Seidel E (1995) Quartz exsolution in clinopyroxene of high-pressure granulite from the Münchberg Massif. Eur J Mineral 7:1217–1220

    Google Scholar 

  • Green HW, Dobrzhinetskaya L, Riggs EM, Zheng-Ming J (1997) Alpe Arami: a peridotite massif from the Mantle Transition Zone? Tectonophysics 279:1–21

    Article  Google Scholar 

  • Haggerty SE, Fung A, Burt DM (1994) Apatite, phosphorus and titanium in eclogitic garnet from the upper mantle. Geophys Res Lett 21:1699–1702

    Article  Google Scholar 

  • Harlow GE (1998) Interpretation of Kcpx and CaEs components in clinopyroxene from diamond inclusions and mantle samples. In: Gurney JJ, Gurney JL, Pascoe M, Richardson SH (eds) Proceedings VIIth International Kimberlite Conferrence, National Book Printers, Goodwood, South Africa, pp 321–332

    Google Scholar 

  • Hermann J (2002) Experimental constraints on phase relations in subducted continental crust. Contrib Mineral Petrol 143:219–235

    Article  Google Scholar 

  • Hermann J, O’Neill HSC, Berry AJ (2005) Titanium solubility in olivine in the system TiO2-MgO-SiO2: no evidence for an ultra-deep origin of Ti-bearing olivine. Contrib Mineral Petrol 148:746–760

    Article  Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J metam Geol 16:309–343

    Article  Google Scholar 

  • Holloway JR, Pan V, Gudmundsson G (1992) High-pressure fluid-absent melting experiments in the presence of graphite: oxygen fugacity, ferric/ferrous ratio and dissolved CO2. Eur J Mineral 4:105–114

    Google Scholar 

  • Irifune T, Ringwood AE, Hibberson WO (1994) Subduction of continental crust and terrigenous and pelagic sediments: an experimental study. Earth Planet Sci Lett 126:351–368

    Article  Google Scholar 

  • Janák M, Froizheim N, Lupták B, Vrabec M, Krogh Ravna EJ (2004) First evidence for ultrahigh-pressure metamorphism of eclogites in Pohorje, Slovenia: Tracing deep continental subduction in the Eastern Alps. Tectonics. doi:10.1029/2004TC001641

  • Janák M, Froitzheim N, Vrabec M, Krogh Ravna EJ (2005) Reply to comment by C. Miller and J. Konzett on First evidence for ultrahigh pressure metamorphism of eclogites in Pohorje, Slovenia: tracing deep continental subduction in the eastern Alps. Tectonics 24:TC6011. doi:10.1029/2005TC001875

  • Jarosevich E, Nelen JA, Norberg JA (1980) Reference samples for electron microprobe analysis. Geostand Newslett 4:43–47

    Article  Google Scholar 

  • Katayama I, Nakashima S (2003) Hydroxyl in clinopyroxene from the deep subducted crust: evidence for H2O transport into the mantle. Am Min 88:229–234

    Google Scholar 

  • Katayama I, Parkinson CD, Okamoto K, Nakajima Y, Maruyama S (2000) Supersilicic clinopyroxene and silica exsolution in UHPM eclogite and pelitic gneiss from the Kokchetav massif, Kazakhstan. Am Min 85:1368–1374

    Google Scholar 

  • Keppler H, Frost DJ (2005) Introduction to minerals under extreme conditions. In: Miletich R (ed) EMU notes in mineralogy vol. 7, Eötvös University Press, Budapest, pp 1–30

    Google Scholar 

  • Kessel R, Ulmer P, Pettke T, Schmidt MW, Thompson AB (2005) The water-basalt system at 4 to 6 GPa: phase relations and second critical endpoint in a K-free eclogite at 700 to 1400°C. Earth Planet Sci Lett 237:873–892

    Article  Google Scholar 

  • Khanukova LT, Zharikov VA, Ishbulatov RA, Litvin YA (1976) Excess silica in solid solutions of high-pressure clinopyroxenes as shown by experimental study of the system CaMgSi2O6-CaAl2SiO6 at 35 kilobars and 1200°C. Dokl Earth Sci Sect 229:170–172

    Google Scholar 

  • Klemd R (2003) Ultrahigh-pressure metamorphism in eclogites from the western Tianshan high-pressure belt (Xinjiang, western China)—Comment. Am Min 88:1153–1156

    Google Scholar 

  • Klemme S, Blundy JD, Wood BJ (2002) Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochim Cosmochim Acta 66:3109–3123

    Article  Google Scholar 

  • Koch-Müller M, Matsyuk SS, Wirth R (2004) Hydroxyl in omphacites and omphacitic clinopyroxenes of upper mantle to lower crustal origin beneath the Siberian platform. Am Min 89:921–931

    Google Scholar 

  • Konzett J, Ulmer P (1999) The stability of hydrous potassic phases in lherzolitic mantle—an experimental study to 9.5 GPa in simplified and natural bulk compositions. J Petrol 40:629–665

    Article  Google Scholar 

  • Kretz R (1983) Symbols for rock-forming minerals. Am Min 68:277–279

    Google Scholar 

  • Lesher CE, Walker D (1988) Cumulate maturation and melt migration in a temperature gradient. J Geophys Res 93:10295–10311

    Google Scholar 

  • Lesher CE, Pickering-Witter J, Baxter G, Walter M (2003) Melting of garnet peridotite: effects of capsule and thermocouples, and implications for the high-pressure mantle solidus. Am Min 88:1181–1189

    Google Scholar 

  • Liati A, Gebauer D, Wysoczanski R (2002) U-Pb SHRIMP-dating of zircon domains from UHP garnet-rich mafic rocks and late pegmatoids in the Rhodope zone (N Greece); evidence for Early Cretaceous crystallization and Late Cretaceous metamorphism. Chem Geol 184:281–299

    Article  Google Scholar 

  • Mao HK (1971) The system jadeite (NaAlSi2O6)-anorthite (CaAl2Si2O8) at high pressures. Carnegie Inst Yearb 69:163–168

    Google Scholar 

  • McCormick TC (1986) Crystal-chemical aspects of nonstoichiometric pyroxenes. Am Min 71:1434–1440

    Google Scholar 

  • Melson GW, Wright TL, Byerly G, Nelen J (1976) Chemical diversity of abyssal volcanic glass erupted along Pacific, Atlantic, and Indian Ocean sea-floor spreading centers. In: Sutton GM, Manghnani MH, Moberly R (eds) The geophysics of the Pacific Ocean Basin and its margin. Geophys Mono Ser 19, AGU, Washington DC, pp. 351–367

    Google Scholar 

  • Millholland CS, Presnall DC (1998) Liquidus phase relations in the CaO-MgO-Al2O3-SiO2 system at 3.0 GPa; the aluminous pyroxene thermal divide and high-pressure fractionation of picritic and komatiitic magmas. J Petrol 39:3–27

    Article  Google Scholar 

  • Miller C, Konzett J (2005) Comment on First evidence for ultrahigh-pressure metamorphism of eclogites in Pohorje, Slovenia: tracing deep continental subduction in the eastern Alps. Tectonics 24. doi:10.1029/2004TC001765

  • Miller C, Mundil R, Thöni M, Konzett J (2005) Refining the timing of eclogite metamorphism: a geochemical, petrological, Sm-Nd and U-Pb case study from the Pohorje Mountains, Slovenia (Eastern Alps). Contrib Mineral Petrol 150:70–84

    Article  Google Scholar 

  • Oberti R, Caporuscio FA (1991) Crystal chemistry of clinopyroxenes from mantle eclogites: a study of the key role of the M2 site population by means of crystal-structure refinement. Am Min 76:1141–1152

    Google Scholar 

  • Ono S, Yasuda A (1996) Compositional change of majoritic garnet in a MORB composition from 7–17 GPa and 1400–1600°C. Phys Earth Planet Int 96:171–179

    Article  Google Scholar 

  • Okamoto K, Maruyama S (2004) The eclogite–garnetite transformation in the MORB + H2O system. Phys Earth Planet Int 146:283–296

    Article  Google Scholar 

  • Page FZ, Essene EJ, Mukasa SB (2005) Quartz exsolution in clinopyroxene is not proof of ultrahigh pressures: evidence from eclogites from the Eastern Blue Ridge, Southern Appalachians, U.S.A. Am Min 90:1092–1099

    Article  Google Scholar 

  • Pertermann M, Hirschman MM (2002) Trace-element partitioning between vacancy-rich eclogititc clinopyroxene and silicate melt. Am Min 87:1365–1376

    Google Scholar 

  • Proyer A, Dachs E, McCammon C (2004) Pitfalls in geothermobarometry of eclogites: Fe3+ and changes in the mineral chemistry of omphacite at ultrahigh pressures. Contrib Mineral Petrol 147:305–318

    Article  Google Scholar 

  • Ringwood AE, Major A (1971) Synthesis of majorite and other high pressure garnets and perovskites. Earth Planet Sci Lett 12:411–441

    Article  Google Scholar 

  • Rubie DC, Karato S, Yan H, O’Neill HStC (1993) Low differential stress and controlled chemical environment in multianvil high-pressure experiments. Phys Chem Min 20:315–322

    Article  Google Scholar 

  • Schmädicke E, Müller WF (2000) Unusual exsolution phenomena in omphacite and partial replacement of phengite by phlogopite + kyanite in an eclogite from the Erzgebirge. Contrib Mineral Petrol 139:629–642

    Article  Google Scholar 

  • Schmid R, Wilke M, Oberhänsli R, Janssens K, Falkenberg G, Franz L, Gaab A (2003) Micro-XANES determination of ferric iron and its application in thermobarometry. Lithos 70:381–392

    Article  Google Scholar 

  • Schmidt MW (1996) Experimental constraints on recycling of potassium from subducted oceanic crust. Science 272:1927–1929

    Article  Google Scholar 

  • Schmidt MW, Ulmer P (2004) A rocking multianvil: elimination of chemical segregation in fluid-saturated high-pressure experiments. Geochim Cosmochim Acta 68:1889–1899

    Article  Google Scholar 

  • Schmidt MW, Poli S, Comodi P, Zanazzi PF (1997) High-pressure behavior of kyanite: decomposition of kyanite into stishovite and corundum. Am Min 82:460–466

    Google Scholar 

  • Shee SR, Gurney JJ (1979) The mineralogy of xenoliths from Orapa, Botswana. In: Boyd FR, Meyer HOA (eds) Kimberlites, diatremes and diamonds: their geology, petrology, and geochemistry. Am Geophys Union, Washington, pp 37–49

    Google Scholar 

  • Smyth JR (1980) Cation vacancies and the crystal chemistry of breakdown reactions in kimberlitic omphacites. Am Min 65:1185–1191

    Google Scholar 

  • Smyth JR, Caporuscio FA (1984) Petrology of a suite of eclogite inclusions from the Bobbejaan kimberlite, II. Primary phase composition and origin. In: Kornprobst J (ed) Kimberlites, II. The mantle and crust-mantle relationships. Elsevier, Amsterdam, pp 121–132

    Google Scholar 

  • Smyth JR, McCormick TC, Caporuscio FA (1984) Petrology of a suite of eclogite inclusions from the Bobbejaan kimberlite, I. Two unusual corundum-bearing kyanite eclogites. In: Kornprobst J (ed) Kimberlites, II. The mantle and crust-mantle relationships. Elsevier, Amsterdam, pp. 109–119

    Google Scholar 

  • Smyth JR, Caporuscio FA, McCormick TC (1989) Mantle eclogites: evidence of igneous fractionation in the mantle. Earth Planet Sci Lett 93:1333–1141

    Article  Google Scholar 

  • Smyth JR, Bell DR, Rossman GR (1991) Incorporation of hydroxyl in upper-mantle clinopyroxenes. Nature 351:732–735

    Article  Google Scholar 

  • Song SG, Yang JS, Xu ZQ, Liou JG, Shi RD (2003) Metamorphic evolution of the coesite-bearing ultrahigh-pressure terrane in the North Qaidam, Northern Tibet, NW China. J Metam Geol 21:631–644

    Article  Google Scholar 

  • Susaki J, Akaogi M, Akimoto S, Shimomura O (1985) Garnet-perovskite transformation in CaGeO3: in-situ X-ray measurements using synchrotron radiation. Geophys Res Lett 12:729–732

    Google Scholar 

  • Terry MP, Robinson P (2001) Evidence for supersilicic pyroxene in an UHP kyanite eclogite, Western Gneiss Region, Norway. Eleventh Annual V.M. Goldschmidt Conf: abstract 3842

  • Terry MP, Robinson P, Krogh Ravna EJ (2000) Kyanite eclogite thermobarometry and evidence for thrusting of UHP over HP metamorphic rocks, Nordøyane, Western Gneiss Region, Norway. Am Min 85:1637–1650

    Google Scholar 

  • Terry M, Bromiley GD, Robinson P (2003) Determination of equilibrium water content and composition of omphacitic pyroxene in a UHP kyanite–eclogite, Western Norway. Geophys Res Abs 5:08698

    Google Scholar 

  • Tsai C-H, Liou JG (2000) Eclogite-facies relics and inferred ultrahigh-pressure metamorphism in the North Dabie Complex, central China. Am Min 85:1–8

    Google Scholar 

  • Ulmer P, Risold AC, Trommsdorff V (1998) TiO2 solubility in mantle olivine as a function of pressure, temperature, a(SiO2), and f(H2). EOS Trans Am Geophys Union 79:F164

    Google Scholar 

  • Wood BJ, Henderson CMB (1978) Composition and unit-cell parameters of synthetic non-stoichiometric tschermakitic clinopyroxenes. Am Min 63:66–72

    Google Scholar 

  • Yasuda A, Fujii T, Kurita K (1994) Melting phase relations of an anhydrous mid-ocean ridge basalt from 3 to 20 GPa: implications fort he behavior of subducted oceanic crust in the mantle. J Geophys Res 99:9401–9414

    Article  Google Scholar 

  • Zhang R, Liou J (1998) Ultrahigh-pressure metamorphism of the Sulu Terrane, Eastern China: a prospective view. Cont Dyn 3:32–53

    Google Scholar 

  • Zhang J, Li B, Utsumi W, Liebermann RC (1996) In-situ X-ray observations of the coesite-stishovite transition: reversed phase boundary and kinetics. Phys Chem Min 23:1–10

    Article  Google Scholar 

  • Zhang L, Ellis DF, Jiang W (2002) Ultrahigh-pressure metamorphism in western Tianshan, China: part I. Evidence from inclusions of coesite pseudomorphs in garnet and from quartz exsolution lamellae in omphacite in eclogites. Am Min 87:853–860

    Google Scholar 

  • Zhang L, Ellis DF, Williams S, Jiang W (2003) Ultrahigh-pressure metamorphism in eclogites from the western Tianshan, China—reply. Am Min 88:1157–1160

    Google Scholar 

  • Zhang L, Song S, Liou JG, Ai Y, Li X (2005) Relict coesite exsolution in omphacite from Western Tianshan eclogites, China. Am Min 90:181–186

    Article  Google Scholar 

  • Zharikov VA, Ishbulatov RA, Chudinovskikh LT (1984) High-pressure clinopyroxenes and the eclogite barrier. Geol Geofiz 25:54–63

    Google Scholar 

  • Zhu Y, Ogasawara Y (2002) Phlogopite and coesite exsolution from super-silicic clinopyroxene. Int Geol Rev 44:831–836

    Google Scholar 

Download references

Acknowledgments

The setup of the multianvil press at the University of Innsbruck would not have been possible without the knowhow and experience of the BGI generously made available by Dave Rubie, Kurt Klasinski and Georg Hermannsdörfer. Their support is gratefully acknowledged. We would also like to thank three anonymous reviewers for their thorough reviews that helped to straighten out various mistakes and inaccuracies. This study was financially supported by the Austrian Science Foundation (grant No. P14851-N04) and conducted under the University of Innsbruck, Faculty of Geo and Atmospheric Sciences’ research program “geodynamics–geomaterials”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Konzett.

Additional information

Communicated by C. Ballhaus.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konzett, J., Frost, D.J., Proyer, A. et al. The Ca-Eskola component in eclogitic clinopyroxene as a function of pressure, temperature and bulk composition: an experimental study to 15 GPa with possible implications for the formation of oriented SiO2-inclusions in omphacite. Contrib Mineral Petrol 155, 215–228 (2008). https://doi.org/10.1007/s00410-007-0238-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-007-0238-0

Keywords

Navigation