Skip to main content
Log in

Late-orogenic Sveconorwegian massif anorthosite in the Jotun Nappe Complex, SW Norway, and causes of repeated AMCG magmatism along the Baltoscandian margin

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The age and tectonometamorphic history of massif anorthosite in the Jotun Nappe Complex, SW Norway, were investigated by zircon and titanite U–Pb ID-TIMS. The anorthosite contains sparse zircons showing complex U–Pb systematics reflecting events dated at 965 ± 4 and 913 ± 2 Ma, and a pronounced Caledonian metamorphic overprint. The oldest age is interpreted as the protolith age of the massif anorthosite. We propose that the Jotun anorthosite is related to 970–960 Ma magmatism in the Western Gneiss Region and coeval, orogen-perpendicular extension. Conversely, a 930 Ma high-grade metamorphic event in the Jotun Nappe Complex and the related Lindås Nappe is likely related to formation of the autochthonous ca. 930 Ma Rogaland anorthosite complex. We suggest that the two late- to post-orogenic AMCG events reflect two instances of lithospheric foundering below the orogen separated by ca. 20–30 my. The 913 ± 2 Ma metamorphic episode appears to date a heating event restricted to the outermost edge of the Western Gneiss Region. Leucosome formation in high-grade gneisses geographically close to the Jotun anorthosite is dated at 892 ± 4 Ma and suggested to reflect CO2-rich (?) fluid flux along shear zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersen TB (1998) Extensional tectonics in southern Norway: An overview. Tectonophysics 273:129–153

    Google Scholar 

  • Andersen T, Andresen A, Sylvester AG (2002) Timing of late- to post-tectonic Sveconorwegian granitic magmatism in South Norway. NGU-Bull 440:5–18

    Google Scholar 

  • Andersson M, Lie JE, Husebye ES (1996) Tectonic setting of postorogenic granites within SW Fennoscandia based on deep seismic and gravity data. Terra Nova 8:558–566

    Article  Google Scholar 

  • Ashwal LD (1993) Anorthosites. Springer, Berlin

    Google Scholar 

  • Battey MH, McRitchie WD (1973) A geological traverse across the pyroxene-granulites of Jotunheimen in the Norwegian Caledonides. Nor J Geol Supplement 53(3):237–265

    Google Scholar 

  • Bédard JH (2001) Parental magmas of the Nain plutonic suite anorthosites and mafic cumulates; a trace element modelling approach. Contrib Mineral Petrol 141(6):747–771

    Article  Google Scholar 

  • Bhattacharya A, Raith M, Hoernes S, Banerjee D (1998) Geochemical evolution of the massif-type anorthosite complex at Bolangir in the Eastern Ghats Belt of India. J Petrol 39(6):1169–1195

    Article  Google Scholar 

  • Bingen B, Stein H (2003) Molybdenite Re-Os dating of biotite dehydration melting in the Rogaland high-temperature granulites, S Norway. Earth Planet Sci Lett 208(3):181–195

    Article  Google Scholar 

  • Bingen B, van Breemen O (1998a) Tectonic regimes and terrane boundaries in the high-grade Sveconorwegian Belt of SW Norway, inferred from U-Pb zircon geochronology and geochemical signature of augen gneiss suites. Geol Soc Lond 155(1):143–154

    Article  Google Scholar 

  • Bingen B, van Breemen O (1998b) U-Pb monazite ages in amphibolite- to granulite-facies orthogneiss reflect hydrous mineral breakdown reactions; Sveconorwegian Province of SW Norway. Contrib Mineral Petrol 132(4):336–353

    Article  Google Scholar 

  • Bingen B, Austrheim H, Whitehouse M (2001a) Ilmenite as a source for zirconium during high-grade metamorphism? Textural evidence from the Caledonides of western Norway and implications for zircon geochronology. J Petrol 42(2):355–375

    Article  Google Scholar 

  • Bingen B, Davis WJ, Austrheim H (2001b) Zircon U–Pb geochronology in the Bergen Arc eclogites and their Proterozoic protoliths, and implications for the pre-Scandian evolution of the Caledonides in western Norway. Geol Soc Am Bull 113(5):640–649

    Article  Google Scholar 

  • Bingen B, Skår Ø, Marker M, Sigmond EMO, Nordgulen Ø, Ragnhildstveit J, Mansfeld J, Tucker RD, Liégeois J-P (2005) Timing of continental building in the Sveconorwegian orogen, SW Scandinavia. Nor J Geol 85:87–116

    Google Scholar 

  • Cohen AS, O’Nions RK, Siegenthaler R, Griffin WL (1988) Chronology of the pressure-temperature history recorded by a granulite terrain. Contrib Mineral Petrol 98(3):303–311

    Article  Google Scholar 

  • Corfu F (2004) U-Pb age, setting and tectonic significance of the anorthosite-mangerite-charnockite-granite suite, Lofoten-Vesteralen, Norway. J Petrol 45(9):1799–1819

    Article  Google Scholar 

  • Corfu F, Andersen TB (2002) U-Pb ages of the Dalsfjord Complex, SW Norway, and their bearing on the correlation of allochthonous crystalline segments of the Scandinavian Caledonides. Int J Earth Sci 91(6):955–963

    Article  Google Scholar 

  • Corrigan D, Hanmer S (1997) Anorthosites and related granitoids in the Grenville Orogen; a product of convective thinning of the lithosphere? Geology 25(1):61–64

    Article  Google Scholar 

  • Dobmeier C (2006) Emplacement of Proterozoic massif-type anorthosite during regional shortening: evidence from the Bolangir anorthosite complex (Eastern Ghats Province, India). Int J Earth Sci 95(4):543–555

    Article  Google Scholar 

  • Duchesne JC, Liégeois JP, Vander Auwera J, Longhi J (1999) The crustal tongue melting model and the origin of massive anorthosites. Terra Nova 11(2–3):100–105

    Article  Google Scholar 

  • Eliasson T, Schöberg H (1991) U-Pb dating of the post-kinematic Sveconorwegian (Grenvillian) Bohus Granite, SW Sweden; evidence of restitic zircon. Precambrian Res 51(1–4):337–350

    Article  Google Scholar 

  • Emslie RF, Hamilton MA, Thériault RJ (1994) Petrogenesis of a mid-Proterozoic anorthosite-mangerite-charnockite-granite (AMCG) complex; isotopic and chemical evidence from the Nain Plutonic Suite. J Geol 102(5):539–558

    Google Scholar 

  • Forsyth DW, Yang Y (2005) Lithosphere delamination and small-scale convection beneath California imaged with high resolution Rayleigh wave tomography. Geol Soc Am Abstr Programs 37(7):59

    Google Scholar 

  • Fossen H (1992) The role of extensional tectonics in the Caledonides of South Norway. J Struct Geol 14(8–9):1033–1046

    Article  Google Scholar 

  • Frost BR, Chamberlain KR, Schumacher JC (2001) Sphene (titanite); phase relations and role as a geochronometer. Chem Geol 172(1–2):131–148

    Article  Google Scholar 

  • Gáal G, Gorbatschev R (1987) An outline of the Precambrian evolution of the Baltic Shield. Precambrian Res 35:15–52

    Article  Google Scholar 

  • Gee DG, Kumpulainen R, Roberts D, Stephens MB, Thon A, Zachrisson E (1985) Scandinavian caledonides tectonostratigraphic map. In: Gee DG, Sturt BA (eds) The Caledonide Orogen—Scandinavia and related areas. Wiley, Chichester, pp 1266

    Google Scholar 

  • Goldschmidt VM (1916) Uebersicht der Eruptivgesteine im Kaledonischen Gebirge zwischen Stavanger und Trondheim. In: Geologisch-petrographische Studien im Hochgebirge des südlichen Norwegens (Videnskapsselskapets skrifter. I Mat.-Naturv. Klasse. 1916 No. 2), IV. Jacob Dybwad, Kristiania, pp 1–140

  • Green DH, Ringwood AE (1972) A comparison of recent experimental data on the gabbro-garnet granulite-eclogite transition. J Geol 80(3):277–288

    Article  Google Scholar 

  • Griffin WL (1971) Genesis of coronas in anorthosites of the upper Jotun nappe, Indre Sogn, Norway. J Petrol 12(2):219–243

    Google Scholar 

  • Griffin WL, Mellini M, Oberti R, Rossi G (1985) Evolution of coronas in Norwegian anorthosites; re-evaluation based on crystal-chemistry and microstructures. Contrib Mineral Petrol 91(4):330–339

    Article  Google Scholar 

  • Harley SL, Kelly NM, Möller A (2007) Zircon behaviour and the thermal histories of mountain chains. Elements 3:25–30

    Article  Google Scholar 

  • Hellström FA, Johansson A, Larson SA (2004) Age and emplacement of late Sveconorwegian monzogabbroic dykes, SW Sweden. Precambrian Res 128(1–2):39–55

    Article  Google Scholar 

  • Hoskin PWO (2000) Patterns of chaos; fractal statistics and the oscillatory chemistry of zircon. Geochim Cosmochim Acta 64(11):1905–1923

    Article  Google Scholar 

  • Houseman GA, McKenzie DP, Molnar P (1981) Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. J Geophys Res 86(7):6115–6132

    Google Scholar 

  • Jaffey AK, Flynn F, Glendenin L, Bentley W, Essling A (1971) Precision measurement of half-lives and specific activities of 235U and 238U. Phys Rev C Nucl Phys 4:1889–1906

    Google Scholar 

  • Janardhan AS, Newton RC, Smith JV (1979) Ancient crustal metamorphism at low p(H2O); charnockite formation at Kabbaldurga, South India. Nature 278(5704):511–514

    Article  Google Scholar 

  • Janardhan AS, Newton RC, Hansen EC (1982) The transformation of amphibolite facies gneiss to charnockite in southern Karnataka and northern Tamil Nadu, India. Contrib Mineral Petrol 79(2):130–149

    Article  Google Scholar 

  • Johansson L, Möller C, Söderlund U (2001) Geochronology of eclogite facies metamorphism in the Sveconorwegian Province of SW Sweden. Precambrian Res 106(3–4):261–275

    Article  Google Scholar 

  • Kolderup CF, Kolderup NN (1940) Geology of the Bergen Arc system. Bergens Mus Skr 20:1–137

    Google Scholar 

  • Krogh TE (1982) Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using an air abrasion technique. Geochim Cosmochim Acta 46(4):637–649

    Article  Google Scholar 

  • Longhi J, Vander Auwera J, Fram MS, Duchesne JC (1999) Some phase equilibrium constraints on the origin of Proterozoic (massif) anorthosites and related rocks. J Petrol 40(2):339–362

    Article  Google Scholar 

  • Ludwig KR (2003) User’s manual for Isoplot 3.00. Berkeley Geochronology Center, Spec Pub 4, pp 74

  • Lundmark M, Corfu F (2007a) Emplacement of a Silurian granitic dyke swarm during nappe translation in the Scandinavian Caledonides. J Struct Geol (in review)

  • Lundmark M, Corfu F (2007b) The age and origin of the Årdal dyke complex, SW Norway: false isochrons, incomplete mixing and the genesis of Caledonian granites in basement nappes. Tectonics, 26, TC2007. doi:10.1029/2005TC001844

  • Lundmark M (2006) Orogenic cycles along the Baltoscandian margin—a geochronological study of the Jotun Nappe Complex, SW Norway. PhD Thesis, University of Oslo

  • Lundmark M, Corfu F, Selbekk R, Spurgin S (2007) The Proterozoic history of high-grade gneisses in the Jotun Nappe Complex in SW Norway; constraints from U-Pb geochronology. Precambrian Res doi:10.1016/j.precamres.2006.12.015

  • Lutro O, Tveten E (1996) Geologisk kart over Norge, Bergrunnskart Årdal M 1:250 000. Geol Surv Norway

  • McLelland JM, Bickford ME, Hill BM, Clechenko CC, Valley JW, Hamilton MA (2004) Direct dating of Adirondack Massif anorthosite by U-Pb SHRIMP analysis of igneous zircon; implications for AMCG complexes. Geol Soc Am Bull 116(11–12):1299–1317

    Article  Google Scholar 

  • Mezger K, Krogstad EJ (1997) Interpretation of discordant U-Pb zircon ages; an evaluation. J Metamorph Geol 15(1):127–140

    Article  Google Scholar 

  • Milnes AG, Koestler AG (1985) Geological structure of Jotunheimen, Southern Norway (Sognefjell-Valdres cross-section). In: Gee DG, Sturt BA (eds) The Caledonide Orogen; Scandinavia and related areas, vol 1. Wiley, Chichester, pp 457–474

    Google Scholar 

  • Milnes AG, Wennberg OP, Skår Ø, Koestler AG (1997) Contraction, extension and timing in the South Norwegian Caledonides; the Sognefjord transect. In: Burg JP, Ford M (eds) Orogeny through time, 121. Geol Soc Lond, Spec pub, pp 123–148

    Google Scholar 

  • Moser DE, Heaman LM, Krogh TE, Hanes JA (1996) Intracrustal extension of an Archean orogen revealed using single-grain U-Pb zircon geochronology. Tectonics 15(5):1093–1109

    Article  Google Scholar 

  • Möller C (1998) Decompressed eclogites in the Sveconorwegian (-Grenvillian) Orogen of SW Sweden; petrology and tectonic implications. J Metamorph Geol 16(5):641–656

    Article  Google Scholar 

  • Nordgulen Ø (1999) Geologisk kart over Norge, Berggrunnskart Hamar M 1:250 000. Geol Surv Norway

  • Qvale H (1982) Jotundekkets anorthositter: Geologi, mineralogi og geokjemi. In: Barkey H (ed) NGU-rapport 1560/32. Trondheim, pp 164

  • Rice AHN (2005) Quantifying the Exhumation of UHP-Rocks in the Western Gneiss Region, S. W. Norway: a branch-line—balanced crosssection model. Austrian J Earth Sci 98:2–21

    Google Scholar 

  • Roberts D, Gee DG (1985) An introduction to the structure of the Scandinavian Caledonides. In: Gee DG, Sturt B (eds) The Caledonide Orogen; Scandinavia and related areas, vol 1. Wiley, Chichester, pp 59–68

    Google Scholar 

  • Rubatto D, Gebauer D (2000) Use of cathodoluminescence for U-Pb zircon dating by ion microprobe; some examples from the Western Alps. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer, Berlin, pp 373–400

    Google Scholar 

  • Røhr TS, Corfu F, Austrheim H, Andersen TB (2004) Sveconorwegian U-Pb zircon and monazite ages of granulite-facies rocks, Hisarøya, Gulen, Western Gneiss Region, Norway. Nor J Geol 84:251–256

    Google Scholar 

  • Scherstén A, Åreback H, Cornell D, Hoskin P, Åberg A, Armstrong R (2000) Dating mafic-ultramafic intrusions by ion-microprobing contact-melt zircon; examples from SW Sweden. Contrib Mineral Petrol 139(1):115–125

    Article  Google Scholar 

  • Schärer U (1980) U-Pb and Rb-Sr dating of a polymetamorphic nappe terrain; the Caledonian Jotun Nappe, southern Norway. Earth Planet Sci Lett 49(2):205–218

    Article  Google Scholar 

  • Schärer U, Wilmart E, Duchesne JC (1996) The short duration and anorogenic character of anorthosite magmatism; U-Pb dating of the Rogaland Complex, Norway. Earth Planet Sci Lett 139(3–4):335–350

    Article  Google Scholar 

  • Skår Ø (1998) The Proterozoic and Early Paleozoic evolution of the southern parts of the Western Gneiss Complex, Norway. PhD-Thesis, University of Bergen

  • Skår Ø, Pedersen RB (2003) Relations between granitoid magmatism and migmatization; U-Pb geochronological evidence from the Western Gneiss Complex, Norway. Geol Soc Lond 160(6):935–946

    Google Scholar 

  • Sigmond EMO (1998) Geologisk kart over Norge, Berggrunnskart Odda, M 1:250 000. Geol Surv Norway

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26(2):207–221

    Article  Google Scholar 

  • Starmer IC (1990) Mid-Proterozoic evolution of the Kongsberg-Bamble Belt and adjacent areas, southern Norway. In: Gower CF, Rivers T, Ryan B (eds) Mid-Proterozoic Laurentia-Baltica, 38. Geol Assoc Canada Spec Pap, Toronto, pp 279–305

    Google Scholar 

  • Stephens MB, Wahlgren CH, Weijermars R, Cruden AR (1996) Left-lateral transpressive deformation and its tectonic implications, Sveconorwegian Orogen, Baltic Shield, southwestern Sweden. Precambrian Res 79(3–4):261–279

    Article  Google Scholar 

  • Söderlund U, Isachsen CE, Bylund G, Heaman LM, Patchett PJ, Vervoort JD, Anderson UB (2005) U/ Pb baddeleyite ages and Hf, Nd isotope chemistry constraining repeated mafic magmatism in the Fennoscandian Shield from 1.6 to 0.9 Ga. Contrib Mineral Petrol 150(2):174–194

    Article  Google Scholar 

  • Tucker RD, Krogh TE, Råheim A (1990) Proterozoic evolution and age-province boundaries in the central part of the Western Gneiss region, Norway; results of U-Pb dating of accessory minerals from Trondheimsfjord to Geiranger. In: Gower CF, Rivers T, Ryan AB (eds) Mid-Proterozoic Laurentia-Baltica, 38. Geol Assoc Canada, Spec Pap, Toronto, pp 149–173

    Google Scholar 

  • Walderhaug HJ, Torsvik TH, Eide EA, Sundvoll B, Bingen B (1999) Geochronology and palaeomagnetism of the Hunnedalen dykes, SW Norway; implications for the Sveconorwegian apparent polar wander loop. Earth Planet Sci Lett 169(1–2):71–83

    Article  Google Scholar 

  • Vander Auwera J, Longhi J, Duchesne JC (1998) A liquid line of descent of the jotunite (hypersthene monzodiorite) suite. J Petrol 39(3):439–468

    Article  Google Scholar 

  • Wanvik JE (2000) Norwegian anorthosites and their industrial uses, with emphasis on the massifs of the Inner Sogn-Voss area in western Norway. NGU Bull 436:103–112

    Google Scholar 

  • Williams IS, Claesson S (1987) Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides. Contrib Mineral Petrol 97(2):205–217

    Article  Google Scholar 

  • Young DJ, Hacker BR, Andersen TB, Corfu F (2007) Prograde amphibolite facies to ultrahigh-pressure transition along Nordfjord, western Norway: implications for exhumation tectonics. Tectonics 26, TC1007. doi: 10.1029/2004TC001781

Download references

Acknowledgments

The study was funded by NFR grant 147535. We also thank two anonymous reviewers for helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Lundmark.

Additional information

Communicated by T.L. Grove.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lundmark, A.M., Corfu, F. Late-orogenic Sveconorwegian massif anorthosite in the Jotun Nappe Complex, SW Norway, and causes of repeated AMCG magmatism along the Baltoscandian margin. Contrib Mineral Petrol 155, 147–163 (2008). https://doi.org/10.1007/s00410-007-0233-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-007-0233-5

Keywords

Navigation