Skip to main content
Log in

Postcumulus processes in oceanic-type olivine-rich cumulates: the role of trapped melt crystallization versus melt/rock interaction

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Combined microstructural and geochemical investigations on MORB-type primitive olivine-rich cumulates intruded in the Erro–Tobbio (ET) mantle peridotites (Voltri Massif, Ligurian Alps, Italy) revealed that significant chemical changes in minerals were caused by postcumulus crystallization. This is indicated by the occurrence of accessory interstitial minerals (Ti-pargasite, orthopyroxene and Fe–Ti oxides) and by systematic chemical zoning in intercumulus clinopyroxene, resulting in marked trace element (e.g. REE, Ti and Zr) enrichment at constant high Mg-numbers (0.88–0.91) and LREE depletion. Geochemical modelling shows that low trapped melt amounts (<5%) are sufficient to produce the observed trace element enrichments. Chemical zoning in large (mm-size) clinopyroxenes was dominantly caused by in situ fractional crystallization of trapped interstitial liquid rather then porous flow migration of externally derived evolved melts. Zr enrichment relative to REEs in vermicular clinopyroxene and pargasitic amphibole point to small-scale migration and interaction between residual evolved low melt fractions and the olivine cumulus matrix at final stage of crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anders E, Ebihara M (1982) Solar system abundances of the elements, Geochim Cosmochim Acta 46:2363–2380

    Article  Google Scholar 

  • Barnes SJ (1986) The effect of trapped liquid crystallization on cumulus mineral compositions in layered intrusions. Contrib Mineral Petrol 93:524–531

    Article  Google Scholar 

  • Bedard JH (1994) A procedure for calculating the equilibrium distribution of trace elements among the minerals of cumulate rocks, and the concentration of trace elements in coexisting liquids. Chem Geol 118:143–153

    Article  Google Scholar 

  • Bedard JH (2001) Parental magmas of the Nain plutonic suite anorthosites and mafic cumulates: a trace element modelling approach. Contrib Mineral Petrol 141:747–771

    Article  Google Scholar 

  • Bender JF, Hodges FN, Bence AE (1978) Petrogenesis of basalts from the project FAMOUS area: experimental study from 0 to 15 Kbar. Earth Planet Sci Lett 41:277–302

    Article  Google Scholar 

  • Bernstein S (2006) In situ fractional crystallization of a mafic pluton: microanalytical study of a Paleogene gabbronorite plug in East Greenland. Lithos 92:222–237

    Article  Google Scholar 

  • Borghini G, Rampone E, Piccardo GB, Crispini L, De Ferrari R, Godard M (2007) Origin and emplacement of ultramafic-mafic intrusions in the Erro–Tobbio mantle peridotites (Ligurian Alps, Italy). Lithos 94:210–229

    Article  Google Scholar 

  • Campbell AC, Palmer MR, Kinkhammer GP, Bowers TS, Edmond JM, Lawrence JR, Casey JF, Thompson G, Humpris S, Rona P, Karson JA (1988) Chemistry of hot springs on the Mid-Atlantic Ridge. Nature 335:514–519

    Article  Google Scholar 

  • Cawthorn RG, Sander BK, Jones IM (1992) Evidence for the trapped liquid shift effect in the Mount Ayliff Intrusion, South Africa. Contrib Mineral Petrol 111:194–202

    Article  Google Scholar 

  • Cawthorn RG (1996) Models for incompatible trace element abundances in cumulus minerals and their application to plagioclase and pyroxenes in the Bushveld Complex. Contrib Mineral Petrol 123:109–115

    Google Scholar 

  • Chalokwu CI, Grant NK (1990) Petrology of the partrige river intrusion, Duluth complex, Minnesota: 1. Relationships between mineral compositions, density and trapped liquid abundance. J Petrol 31:265–293

    Google Scholar 

  • Charlier B, Auwera JV, Duchesne JC (2005) Geochemistry of cumulates from the Bjerkreim-Sokndal layered intrusion (S. Norway) Part II. REE and the trapped liquid fraction. Lithos 83:255–276

    Article  Google Scholar 

  • Cherniak DJ (2003) REE diffusion in feldspar. Chem Geol 193:25–41

    Article  Google Scholar 

  • Claeson DT, Meurer WP (2004) Fractional crystallization of hydrous basaltic “arc-type” magmas and the formation of amphibole-bearing gabbroic cumulates. Contrib Mineral Petrol 147:288–304

    Article  Google Scholar 

  • Coogan LA, Kempton PD, Saunders AD, Norry MJ (2000a) Melt aggregation within the crust beneath the Mid-Atlantic Ridge: evidence from plagioclase and clinopyroxene major and trace element compositions. Earth Planet Sci Lett 176:245–257

    Article  Google Scholar 

  • Coogan LA, Saunders AD, Kempton PD, Norry MJ (2000b) Evidence from oceanic gabbros for porous melt migration within a crystal mush beneath the Mid-Atlantic Ridge. Geochem Geophys Geosys 1 paper number 2000GC000072

  • Coogan LA, Wilson RN, Gillis KM, MacLeod CJ (2001) Near-solidus evolution of oceanic gabbros: insights from amphibole geochemistry. Geochim Cosmochim Acta 65:4339–4357

    Article  Google Scholar 

  • Cortesogno L, Gaggero L, Zanetti A (2000) Rare earth and trace elements in igneous and high-temperature metamorphic minerals of oceanic gabbros (MARK area, Mid-Atlantic Ridge). Contrib Mineral Petrol 139:373–393

    Article  Google Scholar 

  • Danyushevsky LV, Eggins SM, Falloon TJ, Christie DM (2000) H2O abundance in depleted to moderately enriched Mid-ocean Ridge magmas; Part I: incompatible behaviour, implications for mantle storage, and origin of regional variations. J Petrol 41:1329–1364

    Article  Google Scholar 

  • DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202

    Article  Google Scholar 

  • Elthon D, Stewart M, Ross KD (1992) Compositional trends of minerals in oceanic cumulates. J Geophys Res 97:5-189–5-199

    Google Scholar 

  • Gao Y, Hoefs J, Hellebrand E, von der Handt A, Snow JE (2007) Trace element zoning in pyroxenes from ODP Hole 735B gabbros: diffuse exchange or synkinematic crystal fractionation? Contrib Mineral Petrol 153:429–442

    Article  Google Scholar 

  • Gillis KM (1996) Rare earth element constraints on the origin of amphibole in gabbroic rock from site 894, Hess Deep. In: Mevel C, Gillis KM, Allan JF, Meyer PS (eds) Ocean Drilling program scientific results, vol 147. College Station, TX, USA, pp 59–75

    Google Scholar 

  • Gillis KM, Meyer PS (2001) Metasomatism of oceanic gabbros by late stage melts and hydrothermal fluids: evidence from the rare earth element composition of amphiboles. Geophys Geochem Geosys 2, paper number 2000GC000087

  • Godard M, Jousselin D, Bodinier J-L (2000) Relationships between geochemistry and structure beneath a paleo-spreading centre: a study of the mantle section in the Oman ophiolite. Earth Planet Sci Lett 180:133–148

    Article  Google Scholar 

  • Green DH, Falloon TJ, Eggins SM, Yaxley GM (2001) Primary magmas and mantle temperatures. Eur J Mineral 13:437–451

    Article  Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the earth: the relationships between mantle, continental crust and oceanic crust. Earth Planet Sci Lett 90:297–314

    Article  Google Scholar 

  • Ionov DA, Savoyant L, Dupuy C (1992) Application of the ICP-MS technique to trace element analysis of peridotites and their minerals. Geostandards Newsl 16:311–315

    Article  Google Scholar 

  • Ionov DA, Bodinier JL, Mukasa SB, Zanetti A (2002) Mechanisms and sources of mantle metasomatism: major and trace element compositions of peridotite xenolites from Spitbergen in the context of numerical modelling. J Petrol 43:2219–2259

    Article  Google Scholar 

  • Leake BE (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. Am Mineral 82:1019–1037

    Google Scholar 

  • Mathez EA (1995) Magmatic metasomatism and formation of the Merensky reef, Bushveld Complex. Contrib Mineral Petrol 119:277–286

    Article  Google Scholar 

  • Meurer WP, Claeson DT (2002) Evolution of crystallizing interstitial liquid in an arc-related cumulate determined by LA ICP-MS mapping of a large amphibole oikocryst. J Petrol 43:607–629

    Article  Google Scholar 

  • Meyer PS, Dick HJB, Thomson G (1989) Cumulates gabbro from the Southwest Indian Ridge, 54° S–7°13′ E: implication for magmatic processes at a slow spreading ridge. Contrib Mineral Petrol 103:44–63

    Article  Google Scholar 

  • Michael PJ (1988) The concentration, behaviour and storage of H2O in the suboceanic upper mantle: implications for mantle metasomatism. Geochim Cosmochim Acta 52:555–566

    Article  Google Scholar 

  • Michard A (1989) Rare earth element systematics in hydrothermal fluids. Geochim Cosmochim Acta 53:745–750

    Article  Google Scholar 

  • Natland JH, Meyer PS, Dick HJB, Bloomer SH (1991) Magmatic oxides and sulfides in gabbroic rocks from Hole 735B and the later development of the liquid line of descent. In: Von Herzen RP, Robinson PT, et al (eds) Proceedings of the ODP, science results, vol 118. Ocean Drilling Program, College Station, TX, pp 75–111

  • Natland JH, Dick HJB (2001) Formation of the lower ocean crust and the crystallization of gabbroic cumulates at a very slowly spreading ridge. J Volcanology Geothermal Res 110:191–233

    Article  Google Scholar 

  • Rampone E, Hofmann AW, Raczek I (1998) Isotopic contrasts within the Internal Liguride ophiolite (N. Italy): the lack of a genetic mantle-crust link. Earth Planet Sci Lett 163:175–189

    Article  Google Scholar 

  • Rampone E, Piccardo GB, Romairone A, Raczek I, Abouchami W, Hofmann AW (2005) Mantle-crust relations in embryonic slow spreading ocean basins: insights from the Ligurian and Corsica ophiolites. Geophys Res Abstract EGU05-A-07883

  • Ross K, Elthon D (1997) Cumulus and postcumulus crystallization in the ocean crust: major- and trace-element geochemistry of leg 153 gabbroic rocks. In: Karson JA, Cannat M, Millet DJ, Elthon D (eds) Proceedings of the Ocean Drilling Program, scientific results, vol 153. Ocean Drilling Program, College Station, TX, pp 333–350

  • Rutherford MJ, Sigurdsson H, Carey S, Davis A (1985) The May 18, 1980, eruption of Mount St. Helens, 1, Melt composition and experimental phase equilibria. J Geophys Res 90:2929–2947

    Google Scholar 

  • Sato H, Nakada S, Fujii T, Nakamura M, Suzuki-Kamata K (1999) Groundmass pargasite in the 1991–1995 dacite of Unzen volcano: phase stability experiments and volcanological implications. J Volcanol Geotherm Res 89:197–212

    Article  Google Scholar 

  • Shimizu N (1981) Trace element incorporation into growing augite phenocryst. Nature 289:575-577

    Article  Google Scholar 

  • Sisson TW, Grove TL (1993) Temperatures and H2O contents of low-Mg high-alumina basalts. Contrib Mineral Petrol 113:167–184

    Article  Google Scholar 

  • Sobolev AV, Chaussidon M (1996) H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: implications for H2O storage and recycling in the mantle. Earth Planet Sci Lett 137:45–55

    Article  Google Scholar 

  • Suhr G, Seck HS, Shimizu N, Gunther D, Jenner G (1998) Circulation of refractory melts in the lowermost oceanic crust: evidence from a trace element study of dunite-hosted clinopyroxenes in the Bay of Islands Ophiolite. Contrib Mineral Petrol 122:387–405

    Google Scholar 

  • Tiepolo M, Bottazzi P, Palenzona M, Vannucci R (2003) A laser probe coupled with ICP-double-focusing sector-field mass spectometer for in situ analyses of geological samples and U–Pb dating of zircon. Can Mineral 41:259–272

    Article  Google Scholar 

  • Tribuzio R, Tiepolo M, Vannucci R, Bottazzi P (1999) Trace element distribution within the olivine-bearing gabbros from the Northern Apennine ophiolites (Italy): evidence for post-cumulus crystallization in MOR-type gabbroic rocks. Contrib Mineral Petrol 134:123–133

    Article  Google Scholar 

  • Tribuzio R, Tiepolo M, Thirlwall MF (2000) Origin of titanian pargasite in gabbroic rocks from the Northern Apennine ophiolites (Italy): insights into the late-magmatic evolution of a MOR-type intrusive sequence. Earth Planet Sci Lett 176:281–293

    Article  Google Scholar 

  • Vaggelli G, Olmi F, Conticelli S (1999) Quantitative electron microprobe analysis of reference silicate mineral and glass samples. Acta Vulcanologica 11(2):297–303

    Google Scholar 

  • Van Orman JA, Grove TL, Shimizu N (2001) Rare earth element diffusion in diopside: influence of temperature, pressure, and ionic radius, and an elastic model for diffusion in silicates. Contrib Mineral Petrol 141:687–703

    Article  Google Scholar 

  • Walter MJ, Presnall DC (1994) Melting behaviour of simplified lherzolite in the system CaO–MgO–Al2O3–SiO2–-Na2O from 7 to 35 kbar. J Petrol 35:329–359

    Google Scholar 

Download references

Acknowledgements

We acknowledge A. Zanetti (Pavia) and L. Negretti (Genova) for assistance with the LAM-ICP-MS and EDS analyses. M. Godard (Montpellier) and M. Mazzucchelli (Modena) are greatly thanked for providing ICP–MS and XRF bulk-rock analyses. Reviews from D. Ionov and an anonymous referee are gratefully acknowledged for constructive criticisms and suggestions, which improved an early version of the paper. We also thank R. Tribuzio for stimulating discussion. We acknowledge funding by the University of Genova and Italian PRIN-COFIN to the project “The role of melt-peridotite interaction in the modification and evolution of the lithospheric mantle”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Borghini.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borghini, G., Rampone, E. Postcumulus processes in oceanic-type olivine-rich cumulates: the role of trapped melt crystallization versus melt/rock interaction. Contrib Mineral Petrol 154, 619–633 (2007). https://doi.org/10.1007/s00410-007-0217-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-007-0217-5

Keywords

Navigation