Skip to main content
Log in

Fractionation of the noble metals by physical processes

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

During partial melting in the earth’s mantle, the noble metals become fractionated. Os, Ir, Ru, and Rh tend to remain in the mantle residue whereas Pt, Pd, and Re behave mildly incompatible and are sequestered to the silicate melt. There is consensus that sulfide plays a role in the fractionation process; the major noble metal repository in the mantle is sulfide, and most primitive mantle melts are sulfide-saturated when they leave their mantle sources. However, with sulfide–silicate partitioning, the fractionation cannot be modeled properly. All sulfide–silicate partition coefficients are so extremely high that a silicate melt segregating from a mantle source with residual sulfide should be largely platinum-group elements free. We offer a physical alternative to sulfide–silicate chemical partitioning and provide a mechanism of generating a noble metal-rich melt from a sulfide-saturated source: Because sulfide is at least partially molten at asthenospheric temperature, it will behave physically incompatible during melt segregation, and a silicate melt segregating from a mantle residue will entrain molten residual sulfide in suspension and incorporate it in the basaltic pool melt. The noble metal abundances of a basalt then become independent of sulfide–silicate chemical partitioning. They reflect the noble metal abundances in the drained sulfide fraction as well as the total amount of sulfide entrained. Contrary to convention, we suggest that a fertile, sulfide-rich mantle source has more potential to generate a noble metal-enriched basaltic melt than a refractory mantle source depleted by previous partial melting events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ahmed A, Arai S (2002) Unexpectedly high-PGE chromitite from the deeper mantle section of the northern Oman ophiolite and its tectonic implications. Contrib Mineral Petrol 143:263–278

    Google Scholar 

  • Alard O, Griffin WL, Lorand JP, Jackson SE, O’Reilly SY (2000) Non-chondritic distribution of the highly siderophile elements in mantle sulphides. Nature 407:891–894

    Article  Google Scholar 

  • Alard O, Griffin WL, Pearson NJ, Lorand J-P, O’Reilly SY (2002) New insights into the Re-Os systematics of sub-continental lithospheric mantle from in-situ analysis of sulphides. Earth Planet Sci Lett 203:651–663

    Article  Google Scholar 

  • Alard O, Luguet A, Pearson NJ, Griffin WL, Lorand JP, Gannoun A, Burton KW, O’Reilly SY (2005) In situ Os isotopes in abyssal peridotites bridge the isotopic gap between MORBs and their source mantle. Nature 436:1005–1008

    Article  Google Scholar 

  • Auge T (1985) Platinum-group mineral inclusions in ophiolitic chromitite from the Vourinos complex, Greece. Can Mineral 23:163–171

    Google Scholar 

  • Ballhaus C (1993) Oxidation states of lithospheric and asthenospheric upper mantle. Contrib Mineral Petrol 114:331–348

    Article  Google Scholar 

  • Ballhaus C, Sylvester P (2000) PGE enrichment processes in the Merensky reef. J Petrol 41:545–561

    Article  Google Scholar 

  • Ballhaus C, Tredoux M, Spaeth A (2001) Phase relations in the Fe-Ni-Cu-PGE-S system at magmatic temperature and application to massive sulfide ores of the Sudbury Igneous Complex. J Petrol 42:1911–1926

    Article  Google Scholar 

  • Barnes SJ, Boyd R, Korneliussen A, Nilsson LP, Often M, Pedersen RB, Robins B (1988) The use of mantle normalization and metal ratios in discriminating between the effects of partial melting, crystal fractionation and sulphide segregation on platinum-group elements, gold, nickel, and copper: examples from Norway. In: Prichard HM, Potts PJ, Bowles SJ, Cripp SJ (eds) Geoplatinum. Elsevier, London, pp 113–143

  • Barnes SJ, Naldrett AJ, Gorton MP (1985) The origin of the fractionation of platinum-group elements in terrestrial magmas. Chem Geol 53:303–323

    Article  Google Scholar 

  • Bennett VC, Norman MD, Garcia MO (2000), Rhenium and platinum group element abundances correlated with mantle source components in Hawaiian picrite: sulfides in the plume. Earth Planet Sci Lett 183:513–526

    Article  Google Scholar 

  • Bezmen NL, Asiv M, Brügmann GE, Romanenko IM, Naldrett AJ (1994) Distribution of Pd, Rh, Ru, Ir, Os, and Au between sulfide and silicate melts. Geochim Cosmochim Acta 58:1251–1260

    Article  Google Scholar 

  • Bézos A, Lorand JP, Hummler E, Gros M (2005) Platinum-group element systematics in mid-oceanic ridge basaltic glasses from the Pacific and Indian oceans. Geochim Cosmochim Acta 69:2613–2627

    Article  Google Scholar 

  • Bockrath C, Ballhaus C (2002) PGE fractionation between sulfide-bearing mantle and basaltic melt during partial melting and melt segregation. In: Proceedings of the 9th international platinum symposium, abstract with program, 21–25 July 2002, Billings, Montana, pp 41–43

  • Bockrath C, Ballhaus C, Holzheid A (2004a) Fractionation of the platinum-group elements during mantle melting. Science 305:1951–1953

    Article  Google Scholar 

  • Bockrath C, Ballhaus C, Holzheid A (2004b) Stabilities of laurite RuS2 and monosulfide liquid solution at magmatic temperature. Chem Geol 208:265–271

    Article  Google Scholar 

  • Borisov A, Palme H (1997) Experimental determination of the solubility of platinum in silicate melts. Geochim Cosmochim Acta 61:4349–4357

    Article  Google Scholar 

  • Borisov A, Palme H (2000) Solubilities of noble metals in Fe-containing silicate melts as derived from experiments in Fe-free systems. Am Mineral 85:1665–1673

    Google Scholar 

  • Brandon AD, Walker RJ, Puchtel IS, Becker H, Humayun M, Revillon S (2003) 186Os-187Os systematics of Gorgona Island komatiites: implications for early growth of the inner core. Earth Planet Sci Lett 206:411–426

    Article  Google Scholar 

  • de Bremon d’Ars JD, Arndt NT, Hallot E (2001) Analog experimental insights into the formation of magmatic sulfide deposits. Earth Planet Sci Lett 186:371–381

    Article  Google Scholar 

  • Brenan JM (2002) Re-Os fractionation in magmatic sulfide melt by monosulfide solid solution. Earth Planet Sci Lett 199:257–268

    Article  Google Scholar 

  • Brenan JM, Caciagli NC (2000) Fe-Ni exchange between olivine and sulphide liquid: Implications for oxygen barometry in sulphide-saturated magmas. Geochim Cosmochim Acta 64:307–320

    Article  Google Scholar 

  • Brenan JM, McDonough WF (2005) Fractionation of highly siderophile elements (HSEs) by sulfide-silicate partitioning: a new spin. In: Abstracts of the AGU Fall Meeting V41D-1502

  • Brenan JM, McDonough WF, Ash R (2005) An experimental study of the solubility and partitioning of iridium, osmium and gold between olivine and silicate melt. Earth Planet Sci Lett 237:855–872

    Article  Google Scholar 

  • Brügmann GE, Arndt NT, Hofmann AW, Tobschall HJ (1987) Noble metal abundances in komatiite suites from Alexo, Ontario, and Gorgona-Island Colombia. Geochim Cosmochim Acta 51:2159–2169

    Article  Google Scholar 

  • Büchl A, Brügmann G, Batanova VG, Münker C, Hofmann AW (2002) Melt percolation monitored by Os isotopes and HSE abundances: a case study from the mantle section of the Troodos ophiolite, Cyprus. Earth Planet Sci Lett 204:385–402

    Article  Google Scholar 

  • Burton KW, Schiano P, Birck J-L, Allegre CJ (1999) Osmium isotope disequilibrium between mantle minerals in a spinel-lherzolite. Earth Planet Sci Lett 172:311–322

    Article  Google Scholar 

  • Burton KW, Gannoun A, Birck J-L, Allegre CJ, Schiano P, Clocchiatti R, Alard O (2002) The compatibility of rhenium and osmium in natural olivine and their behaviour during mantle melting and basalt genesis. Earth Planet Sci Lett 198:63–76

    Article  Google Scholar 

  • Capobianco CJ, Drake MJ (1990) Partitioning of ruthenium, rhodium, and palladium between spinel and silicate melt and implications for platinum group element fractionation trends. Geochim Cosmochim Acta 54:869–874

    Article  Google Scholar 

  • Capobianco CJ, Hervig RL, Drake MJ (1994) Experiments on crystal liquid partitioning of Ru, Rh and Pd for magnetite and hematite solid-solutions crystallized from silicate melt. Chem Geol 113:23–43

    Article  Google Scholar 

  • Crocket JH, Fleet ME, Stone WE (1997) Implications of composition for experimental partitioning of platinum-group elements and gold between sulfide liquid and basalt melt: the significance of nickel content. Geochim Cosmochim Acta 61:4139–4149

    Article  Google Scholar 

  • Doyle C, Naldrett AJ (1987) The oxygen content of sulfide magma and its effect on the partitioning of nickel between coexisting olivine and molten ores. Econ Geol 82:208–211

    Google Scholar 

  • Elliot T, Spiegelman M (1993) Consequence of melt transport for uranium series disequilibrium in young lavas. Earth Planet Sci Lett 118:1–20

    Article  Google Scholar 

  • Fleet ME, Crocket JH, Stone WE (1996) Partitioning of platinum-group elements (Os, Ir, Ru, Pt, Pd) and gold between sulfide liquid and basalt melt Geochim Cosmochim Acta 60:2397–2412

    Google Scholar 

  • Fleet ME, Stone WE, Crocket JH (1991) Partitioning of palladium, iridium, and platinum between sulfide liquid and basalt melt; effects of melt composition, concentration, and oxygen fugacity. Geochim Cosmochim Acta 55:2545–2554

    Article  Google Scholar 

  • Fleet ME, Chryssoulis SL, Szone WE, Weisener CG (1993) Partitioning of platinum-group elements and Au in the Fe-Ni-Cu-S system—experiments on the fractional crystallization of sulfide melt. Contrib Mineral Petr 115:36–44

    Article  Google Scholar 

  • Fleet ME, Crocket JH, Menghua Li, Stone WE (1999) Laboratory partitioning of platinum-group elements (PGE) and gold with application to magmatic sulfide-PGE deposits. Lithos 47:127–144

    Article  Google Scholar 

  • Gao S, Rudnick RL, Carlson RW, McDonough WF, Liu L-S (2002) Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth Planet Sci Lett 198:307–322

    Article  Google Scholar 

  • Garuti G, Zaccarini F, Moloshag V, Alimov V (1999) Platinum-group minerals as indicators of sulfur fugacity in ophiolitic upper mantle: an example from chromitites of the Ray-Iz ultramafic complex, Polar Urals, Russia. Can Mineral 37:1099–1115

    Google Scholar 

  • Greenough JD, Fryer BJ (1990) Distribution of gold, palladium, rhodium, ruthenium, and iridium in LEG 115 hotspot basalts: Implications for magmatic processes. Proc ODP 115:71–84

    Google Scholar 

  • Hamlyn PR, Keays RR (1986) Sulfur saturation and 2nd-stage melts—application to the Bushveld platinum metal deposits. Econ Geol 81:1431–1445

    Article  Google Scholar 

  • Hamlyn PR, Keays RR, Cameron WE, Crawford AJ, Waldron HM (1985) Precious metals in magnesian low-Ti lavas: implication for metallogenesis and sulfur saturation in primitive magmas. Geochim Cosmochim Acta 49:1797–1811

    Article  Google Scholar 

  • Hauri EH, Hart SR (1997) Rhenium abundances and systematics in oceanic basalts. Chem Geol 139:185–205

    Article  Google Scholar 

  • Hiemstra SA (1979) The role of collectors in the formation of the platinum deposits in the Bushveld complex. Can Miner 17:469–482

    Article  Google Scholar 

  • Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:221–229

    Article  Google Scholar 

  • Irvine GJ, Pearson DG, Kjarsgaard BA, Carlson RW, Kopylova MG, Dreibus G (2003) A Re-Os isotope and PGE study of kimberlite-derived peridotite xenoliths from Somerset Island and a comparison to the Slave and Kaapvaal cratons. Lithos 71:461–488

    Article  Google Scholar 

  • Keays RR (1995) The role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits. Lithos 34:1–18

    Article  Google Scholar 

  • Kinzler RJ, Grove TL (1992) Primary magmas of midocean ridge basalts 2. Applications. J Geophys Res 97:6907–6926

    Google Scholar 

  • Korenaga J, Kelemen PB (1998) Melt migration through the oceanic lower crust: a constraint from melt percolation modeling with finite solid diffusion. Earth Planet Sci Lett 156:1–11

    Article  Google Scholar 

  • Kushiro I, Yoder HS, Mysen BO (1976) Viscosities of basalt and andesite melts at high pressures. J Geophys Res 81:6351–6356

    Article  Google Scholar 

  • Lassiter JC, Hauri EH (1998) Osmium-isotope variations in Hawaiian lavas: evidence for recycled oceanic lithosphere in the Hawaiian plume. Earth Planet Sci Lett 164:483–496

    Article  Google Scholar 

  • Li C, Barnes SJ, Makovicky E, Rose-Hansen J, Makovicky M (1996) Partitioning of nickel, copper, iridium, rhodium, platinum and palladium between monosulfide solid solution and sulfide liquid: effects of composition and temperature. Geochim Cosmochim Acta 60:1231–1238

    Article  Google Scholar 

  • Lorand JP, Alard O (2001) Platinum-group element abundances in the upper mantle: new constraints from in-situ and whole-rock analyses of Massif Central xenoliths (France). Geochim Cosmochim Acta 65:2789–2806

    Article  Google Scholar 

  • Lorand JP, Conquéré F (1983) Contribution à l’étude des sulfures dans les enclaves de lherzolites à spinell des basaltes alcalins (Massif Central et du Languedoc, France). Bull Minéral 106:585–606

    Google Scholar 

  • Lorand J-P, Reisberg L, Bedini LM (2003) Platinum-group elements and melt percolation processes in Sidamo spinel peridotite xenoliths, Ethiopia, East African Rift. Chem Geol 196:57–75

    Article  Google Scholar 

  • Lorand J-P, Delpech G, Gréoire M, Moine B, O’Reilly SY, Cottin J-Y (2004) Platinum-group elements and the multistage metasomatic history of Kerguelen lithospheric mantle (South Indian Ocean). Chem Geol 208:195–215

    Article  Google Scholar 

  • Luguet A, Lorand J-P, Seyler M (2003) Sulfide petrology and highly siderophile element geochemistry of absyssal peridotites: a coupled study of samples from the Kane fracture zone (45°W 23°20N, MARK Area, Atlantic Ocean). Geochim Cosmochim Acta 67:1553–1570

    Article  Google Scholar 

  • Mathez EA (1976) Sulfur solubility and magmatic sulfides in submarine basalt glass. J Geophys Res 81:4269–4276

    Google Scholar 

  • Matveev S, Ballhaus C (2002) Role of water in the origin of podiform chromitite deposits. Earth Planet Sci Lett 203:235–243

    Article  Google Scholar 

  • Mavrogenes J, O’Neill HStC (1999) The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas. Geochim Cosmochim Acta 63:1173–1180

    Article  Google Scholar 

  • Meibom A, Frei R, Sleep NH (2004) Osmium isotopic compositions of Os-rich platinum group element alloys from the Klamath and Siskiyou mountains. J Geophys Res 109:B02203

    Article  Google Scholar 

  • Meisel T, Moser J (2004) Reference materials for geochemical PGE analysis: new analytical data for Ru, Rh, Pd, Os, Ir, Pt and Re by isotope dilution ICP-MS in 11 geological reference materials. Chem Geol 208:319–338

    Article  Google Scholar 

  • Mitchell RH, Keays RR (1981) Abundance and distribution of gold, palladium and iridium in some spinel and garnet lherzolites—implications for the nature and origin of precious metal-rich intergranular components in the upper mantle. Geochim Cosmochim Acta 45:2425–2442

    Article  Google Scholar 

  • Mungall JE, Su S (2005) Interfacial tension between magmatic sulfide and silicate liquidus: constraints on kinetics of sulfide liquation and sulfide migration through silicate rocks. Earth Planet Sci Lett 234:135–149

    Article  Google Scholar 

  • Mungall JE, Andrews DRA, Cabri LJ, Sylvester PJ, Tubrett M (2005) Partitioning of Cu, Ni, Au, and platinum-group elements between monosulfide solid solution and sulfide melt under controlled oxygen and sulfur fugacities. Geochim Cosmochim Acta 69:4349–4360

    Article  Google Scholar 

  • O’Hara MJ, Fry N, Prichard HM (2001) Minor phases as carriers of trace elements in non-modal crystal-liquid separation processes II: illustrations and bearing on behaviour of REE, U, Th and the PGE in igneous processes. J Petrol 42:1887–1910

    Article  Google Scholar 

  • O’Neill HStC, Mavrogenes JA (2002) The sulfide capacity and the sulfur content at sulfide saturation of silicate melts at 1400 degrees C and 1 bar. J Petrol 43:1049–1087

    Article  Google Scholar 

  • Onuma K, Tohara T (1983) Effect of chromium on phase relations in the join forsterite-anorthite-diopside in air at 1-atm. Contrib Mineral Petrol 84:174–181

    Article  Google Scholar 

  • Palme H, O’Neill HStC (2003) In: Carlson RW (ed) Treatise of geochemistry, vol 2. The Mantle and Core, Elsevier Amsterdam, pp1–38

  • Peach CL, Mathez EA (1990) Sulfide melt silicate melt distribution coefficients for nickel and iron and implications for the distribution of other chalcophile elements. Geochim Cosmochim Acta 57:3013–3021

    Article  Google Scholar 

  • Peach CL, Mathez EA, Keays RR (1990) Sulfide melt—silicate melt distribution coefficients for noble metals and other chalcophile elements as deduced from MORB: implications for partial melting. Geochim Cosmochim Acta 54:3379–3389

    Article  Google Scholar 

  • Peach CL, Mathez EA, Keays RR, Reeves SJ (1994) Experimentally determined sulfide melt-silicate melt partition coefficients for iridium and palladium. Chem Geol 117:361–377

    Article  Google Scholar 

  • Pearson DG, Irvine GJ, Ionov DA, Boyd FR, Dreibus GE (2004) Re-Os isotope systematics and platinum group element fractionation during mantle melt extraction: a study of massif and xenolith peridotite suites. Chem Geol 208:29–59

    Article  Google Scholar 

  • Philipp H, Eckhardt JD, Puchelt H (2001) Platinum-group elements (PGE) in basalts of the seaward dipping reflector sequence, SE Greenland coast. J Petrol 42:407–432

    Article  Google Scholar 

  • Puchtel I, Humayun M (2000) Platinum group elements in Kostomuksha komatiites and basalts: implications for oceanic crust recycling and core-mantle interaction. Geochim Cosmochim Acta 64:4227–4242

    Article  Google Scholar 

  • Rehkämper M, Halliday AN, Fitton JG, Lee D-C, Wieneke M, Arndt NT (1999) Ir, Ru, Pt, and Pd in basalts and komatiites: New constraints for the geochemical behavior of the platinum-group elements in the mantle. Geochim Cosmochim Acta 63:3915–3934

    Article  Google Scholar 

  • Reisberg L, Zindler A, Marcantonio F, White W, Wyman D, Weaver B (1993) Os isotope systematics in ocean island basalts. Earth Planet Sci Lett 120:149–167

    Article  Google Scholar 

  • Righter K, Campbell AJ, Humayun M, Hervig RL (2004) Partitioning of Ru, Rh, Pd, Re, Ir, and Au between Cr-bearing spinel, olivine, pyroxene and silicate melt. Geochim Cosmochim Acta 68:867–880

    Article  Google Scholar 

  • Rohrbach A, Schuth S, Ballhaus C, Münker C, Matveev S, Qopoto C (2005) Petrological constraints on the origin of arc picrites, New Georgia Group, Solomon Islands. Contrib Mineral Petrol 149:685–698

    Article  Google Scholar 

  • Rubin KH, van der Zander I, Smith MC, Bergmanis EC (2005) Minimum speed limit for ocean ridge magmatism from Pb-210-Ra-226-Th-230 disequilibria. Nature 437:534–538

    Article  Google Scholar 

  • Ryzhenko B, Kennedy GC (1973) Effect of pressure on eutectic in system Fe-FeS. Am J Sci 273:803–810

    Article  Google Scholar 

  • Sattari P, Brenan JM, Horn I, McDonough WF (2002) Experimental constraints on the sulfide-silicate and chromite-silicate melt partitioning behavior of rhenium and platinum-group elements. Econ Geol 97:385–398

    Article  Google Scholar 

  • Schubert G, Turcotte DL, Olson P (2001) Mantle convection in the earth and planets. Cambridge University Press, Cambridge, 940p

  • Sobolev AV, Hofmann AW, Nikogosian IK (2000) Recycled oceanic crust observed in ghost plagioclase within the source of Mauna Loa lavas. Nature 404:986–990

    Article  Google Scholar 

  • Sobolev AV, Hofmann AW, Sobolev SV, Nikogosian IK (2005) An olivine-free mantle source of Hawaiian shield basalts. Nature 434:590–597

    Article  Google Scholar 

  • Stone WE, Crocket JH, Fleet ME (1990) Partitioning of palladium, iridium, platinum, and gold between sulfide liquid and basalt melt at 1200 degrees C. Geochim Cosmochim Acta 54:2341–2344

    Article  Google Scholar 

  • Tredoux M, Lindsey NM, Davies G, McDonald I (1995) The fractionation of platinum group elements in magmatic systems, with the suggestion of a novel causal mechanism. South Afr J Geol 98:157–167

    Google Scholar 

  • Turner S, Hawkesworth C, van Calsteren P, Heath E, Macdonald R, Black S (1996) U-series isotopes and descructive plate margin magma genesis in the Lesser Antilles. Earth Planet Sci Lett 142:191–207

    Article  Google Scholar 

  • Wedepohl KH (1974) Copper. In: Wedepohl KH (ed) Handbook of geochemistry, vol 2, part 3. Springer, Berlin Heidelburg New York

  • Widom E, Shirey SB (1996) Os isotopic systematics in the azozes: implications for mantle plume sources. Earth Planet Sci Lett 142:451–465

    Article  Google Scholar 

  • Woodhead SJ, Pearson DG, Thirlwall MF (2002) A platinum group element and Re–Os isotope investigation of siderophile element recycling in subduction zones: comparison of Grenada, Lesser Antilles arc, and the Izo-Bonin arc. J Petrol 43:171–198

    Article  Google Scholar 

Download references

Acknowledgments

Comments by J.-P. Lorand and an anonymous reviewer much improved the paper and are highly appreciated. Victor Vinograd helped with approximating the widths of melt conduits. The study was supported by the DFG grants BA 964/15, 964/23, and 964/24 to Chris Ballhaus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Ballhaus.

Additional information

Communicated by J. Hoefs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballhaus, C., Bockrath, C., Wohlgemuth-Ueberwasser, C. et al. Fractionation of the noble metals by physical processes. Contrib Mineral Petrol 152, 667–684 (2006). https://doi.org/10.1007/s00410-006-0126-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-006-0126-z

Keywords

Navigation