Skip to main content

Advertisement

Log in

Lithospheric mantle beneath the south-eastern Siberian craton: petrology of peridotite xenoliths in basalts from the Tokinsky Stanovik

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We provide petrographic, major and trace element data for over 30 spinel peridotite xenoliths from the Tokinsky Stanovik (Tok) volcanic field on the Aldan shield to characterize the lithospheric mantle beneath the south-eastern margin of the Siberian craton, which formed in the Mesoproterozoic. High equilibration temperatures (870–1,010°C) of the xenoliths and the absence of garnet-bearing peridotites indicate a much thinner lithosphere than in the central craton. Most common among the xenoliths are clinopyroxene-poor lherzolites and harzburgites with Al2O3 and CaO contents nearly as low as in refractory xenoliths from kimberlite pipes (Mir, Udachnaya) in the central and northern Siberian craton. By contrast, the Tok peridotites have higher FeO, lower Mg-numbers and lower modal orthopyroxene and are apparently formed by shallow partial melting (≤3 GPa). Nearly all Tok xenoliths yield petrographic and chemical evidence for metasomatism: accessory phlogopite, amphibole, phosphates, feldspar and Ti-rich oxides, very high Na2O (2–3.1%) in clinopyroxene, LREE enrichments in whole-rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Bali E, Szabo C, Vaselli O, Torok K (2002) Significance of silicate melt pockets in upper mantle xenoliths from the Bakony-Balaton Highland Volcanic Field, Western Hungary. Lithos 61:79–102

    Article  CAS  Google Scholar 

  • Bernstein S, Kelemen PB, Brooks CK (1998) Depleted spinel harzburgite xenoliths in Tertiary dykes from East Greenland: restites from high degree melting. Earth Planet Sci Lett 154:219–233

    Article  Google Scholar 

  • Bizzarro M, Stevenson RK (2003) Major element composition of the lithospheric mantle under the North Atlantic craton: evidence from peridotite xenoliths of the Sarfartoq area, southwestern Greenland. Contrib Mineral Petrol 146:223–240

    Article  CAS  Google Scholar 

  • Blundy JD, Falloon TJ, Wood BJ, Dalton JA (1995) Sodium partitioning between clinopyroxene and silicate melts. J Geophys Res 100:15501–15515

    Google Scholar 

  • Boyd FR, Pokhilenko NP, Pearson DG, Mertzman SA, Sobolev NV, Finger LW (1997) Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. Contrib Mineral Petrol 128:228–246

    Article  CAS  Google Scholar 

  • Boyd FR, Pearson DG, Mertzman SA (1999) Spinel-facies peridotites from the Kaapvaal root. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) Proceedings of the 7th international kimberlite conference, vol 1. RedRoof Design, Cape Town, pp 40–48

  • Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites. II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378

    CAS  Google Scholar 

  • Chazot G, Menzies M, Harte B (1996) Silicate glasses in spinel lherzolites from Yemen: origin and composition. Chem Geol 134:159–179

    Article  CAS  Google Scholar 

  • Condie KC, Rosen OM (1994) Laurentia–Siberia connection revisited. Geology 22:168–170

    Google Scholar 

  • Dick HJB, Natland JH (1996) Late-stage melt evolution and transport in the shallow mantle beneath the East Pacific Rise. Proc ODP Sci Res 147:103–134

    CAS  Google Scholar 

  • Francis D (1987) Mantle-melt interaction recorded in spinel lherzolite xenoliths from the Alligator Lake volcanic complex, Yukon, Canada. J Petrol 28:569–597

    CAS  Google Scholar 

  • Frey FA, Green DH (1974) The mineralogy, geochemistry and origin of lherzolite inclusions in Victorian basanites. Geochim Cosmochim Acta 38:1023–1059

    Article  CAS  Google Scholar 

  • Frost BR, Avchenko OV, Chamberlain KR, Frost CD (1998) Evidence for extensive Proterozoic remobilisation of the Aldan shield and implications for Proterozoic plate tectonic reconstructions of Siberia and Laurentia. Precambrian Res 89:1–23

    Article  CAS  Google Scholar 

  • Grégoire M, Moine BN, O’Reilly SY, Cottin JY, Giret A (2000) Trace element residence and partitioning in mantle xenoliths metasomatised by highly alkaline, silicate- and carbonate-rich melts (Kerguelen Islands, Indian Ocean). J Petrol 41:477–509

    Article  Google Scholar 

  • Griffin WL, Ryan CG, Kaminsky FV, O’Reilly SY, Natapov LM, Win TT, Kinny PD, Ilupin IP (1999) The Siberian lithosphere traverse: mantle terranes and the assembly of the Siberian craton. Tectonophysics 310:1–35

    Article  CAS  Google Scholar 

  • Gusev GS, Khain VE (1995) Relationships between Baikalo-Vitim, Aldan-Stanovoy and Mongol-Okhotsk terrains (South Siberia) (in Russian). Geotectonics Sept/Oct:68–82

  • Harte B (1977) Rock nomenclature with particular relation to deformation and recrystallisation textures in olivine-bearing xenoliths. J Geol 85:279–288

    Google Scholar 

  • Hauri EH, Hart SR (1994) Constraints on melt migration from mantle plumes: a trace element study of peridotite xenoliths from Savai’i, Western Samoa. J Geophys Res 99:24301–24321

    Google Scholar 

  • Hellebrand E, Snow JE (2003) Deep melting and sodic metasomatism underneath the highly oblique-spreading Lena Trough (Arctic Ocean). Earth Planet Sci Lett 216:283–299

    Google Scholar 

  • Hellebrand E, Snow JE, Dick HJB, Hofmann AW (2001) Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410:677–681

    Article  CAS  PubMed  Google Scholar 

  • Herzberg C (2004) Geodynamic information in peridotite petrology. J Petrol 45:2507–2530

    Article  CAS  Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust and oceanic crust. Earth Planet Sci Lett 90:297–314

    Article  CAS  Google Scholar 

  • Ionov D (2002) Mantle structure and rifting processes in the Baikal-Mongolia region: geophysical data and evidence from xenoliths in volcanic rocks. Tectonophysics 351:41–60

    Article  CAS  Google Scholar 

  • Ionov DA, Kramm U, Stosch H-G (1992a) Evolution of the upper mantle beneath the southern Baikal rift zone: a Sr–Nd isotope study of xenoliths from the Bartoy volcanoes. Contrib Mineral Petrol 111:235–247

    Article  CAS  Google Scholar 

  • Ionov DA, Savoyant L, Dupuy C (1992b) Application of the ICP-MS technique to trace element analysis of peridotites and their minerals. Geostandard Newslett 16:311–315

    CAS  Google Scholar 

  • Ionov DA, Hofmann AW, Shimizu N (1994) Metasomatism-induced melting in mantle xenoliths from Mongolia. J Petrol 35:753–785

    CAS  Google Scholar 

  • Ionov DA, Prikhod’ko VS, O’Reilly SY (1995a) Peridotite xenoliths from the Sikhote-Alin, south-eastern Siberia, Russia: trace element signatures of mantle beneath a convergent continental margin. Chem Geol 120:275–294

    Article  CAS  Google Scholar 

  • Ionov DA, O’Reilly SY, Ashchepkov IV (1995b) Feldspar-bearing lherzolite xenoliths in alkali basalts from Hamar-Daban, southern Baikal region, Russia. Contrib Mineral Petrol 122:174–190

    Article  CAS  Google Scholar 

  • Ionov DA, O’Reilly SY, Griffin WL (1997) Volatile-bearing minerals and lithophile trace elements in the upper mantle. Chem Geol 141:153–184

    Article  CAS  Google Scholar 

  • Ionov DA, O’Reilly SY, Griffin WL (1998) A geotherm and lithospheric cross-section for central Mongolia. In: Flower MJF, Chung S-L, Lo C-H, Lee TY (eds) Mantle dynamics and plate interactions in East Asia. Amer Geophys Union, Geodynamics Series 27, Washington DC, pp 127–153

  • Ionov DA, Grégoire M, Prikhod’ko VS (1999) Feldspar–Ti-oxide metasomatism in off-cratonic continental and oceanic upper mantle. Earth Planet Sci Lett 165:37–44

    Google Scholar 

  • Ionov DA, Bodinier J-L, Mukasa SB, Zanetti A (2002) Mechanisms and sources of mantle metasomatism: major and trace element compositions of peridotite xenoliths from Spitsbergen in the context of numerical modeling. J Petrol 43:2219–2259

    Article  CAS  Google Scholar 

  • Ionov DA, Ashchepkov I, Jagoutz E (2005) The provenance of fertile off-craton lithospheric mantle: Sr–Nd isotope and chemical composition of garnet and spinel peridotite xenoliths from Vitim, Siberia. Chem Geol 217:41–75

    Article  CAS  Google Scholar 

  • Jahn B-M, Gruau G, Capdevila R, Cornichet J, Nemchin A, Pidgeon R, Rudnik VA (1998) Archean crustal evolution of the Aldan shield, Siberia: geochemical and isotopic constraints. Precambrian Res 91:333–363

    Article  CAS  Google Scholar 

  • Jarosewich E, Nelen JA, Norberg J (1980) Reference samples for electron microprobe analysis. Geostandard Newslett 4:43–47

    Google Scholar 

  • Johnson KTM, Dick HJB, Shimizu N (1990) Melting in the oceanic upper mantle: an ion probe study of diopsides in abyssal peridotites. J Geophys Res 95:2661–2678

    Google Scholar 

  • Kalfoun F, Ionov D, Merlet C (2002) HFSE residence and Nb–Ta ratios in metasomatised, rutile-bearing mantle peridotites. Earth Planet Sci Lett 199:49–65

    Article  CAS  Google Scholar 

  • Kelemen PB, Hart SR, Bernstein S (1998) Silica enrichment in the continental upper mantle via melt/rock reaction. Earth Planet Sci Lett 164:387–406

    Article  CAS  Google Scholar 

  • Kiselev AI, Medvedev ME, Golovko GA (1979) Volcanism of the Baikal rift zone and problems of deep magma generation (in Russian). Nauka, Novosibirsk, 197 p

  • Kogarko LN, Semenova VG, Solov’yeva LV, Kolesov GM, Shubina NA, Korovkina NA (1990) Geochemistry of the upper mantle under the south rim of the Aldan shield. Trans (Doklady) Acad Sci USSR, Earth Sci Sect 303:206–209

    Google Scholar 

  • Kopylova MG, Russell JK (2000) Chemical stratification of cratonic lithosphere: constraints from the Northern Slave craton, Canada. Earth Planet Sci Lett 181:71–87

    Article  CAS  Google Scholar 

  • Kravchinsky VA, Konstantinov KM, Cogne J-P (2001) Palaeomagnetic study of Vendian and Early Cambrian rocks of South Siberia and Central Mongolia: was the Siberian platform assembled at this time? Precambrian Res 110:61–92

    Article  CAS  Google Scholar 

  • Laurora A, Mazzucchelli M, Rivalenti G, Vannucci R, Zanetti A, Barbieri MA, Cingolani CA (2001) Metasomatism and melting in carbonated peridotite xenoliths from the mantle wedge: the Gobernador Gregores case (southern Patagonia). J Petrol 42:69–87

    Article  CAS  Google Scholar 

  • Lee C-T, Rudnick RL (1999) Compositionally stratified cratonic lithosphere: petrology and geochemistry of peridotite xenoliths the Labait volcano, Tanzania. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) Proceedings of the 7th international kimberlite conference, vol 1. RedRoof Design, Cape Town, pp 503–521

  • Merlet C (1994) An accurate computer correction program for quantitative electron probe microanalysis. Mikrochim Acta 114(115):363–376

    Article  Google Scholar 

  • Neumann E-R, Wulff-Pedersen E (1997) The origin of highly silicic glass in mantle xenoliths from the Canary Islands. J Petrol 38:1513–1539

    Article  CAS  Google Scholar 

  • Neumann E-R, Wulff-Pedersen E, Pearson NJ, Spenser EA (2002) Mantle xenoliths from Tenerife (Canary Islands): evidence for reactions between mantle peridotites and silicic carbonatite melts inducing Ca metasomatism. J Petrol 43:825–857

    Article  CAS  Google Scholar 

  • Niida K (1997) Mineralogy of MARK peridotites: replacement through magma channeling examined from Hole 920D, MARK area. Proc ODP Sci Res 153:265–275

    CAS  Google Scholar 

  • Niu Y (1997) Mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites. J Petrol 38:1047–1074

    Article  CAS  Google Scholar 

  • Nutman AP, Chernyshev IV, Baadsgaard H, Smelov AP (1992) The Aldan shield of Siberia, USSR: the age of its Archean components and evidence for widespread reworking in the mid-Proterozoic. Precambrian Res 54:195–210

    Article  CAS  Google Scholar 

  • Palme H, O’Neill HSC (2003) Cosmochemical estimates of mantle composition. In: Carlson RW (ed) Treatise on geochemistry, vol 2. The mantle and core. Elsevier, Amsterdam, pp 1–38

  • Parfenov LM, Kosmin BM, Imaev VS, Savostin LA (1987) The tectonic character of the Olekma–Stanovoy seismic zone. Geotectonics 21:560–572

    Google Scholar 

  • Pearson DG, Shirey SB, Carlson RW, Boyd FR, Pokhilenko NP, Shimizu N (1995) Re–Os, Sm–Nd, and Rb–Sr isotope evidence for thick Archaean lithospheric mantle beneath the Siberian craton modified by multistage metasomatism. Geochim Cosmochim Acta 59:959–977

    CAS  Google Scholar 

  • Pearson DG, Canil D, Shirey SB (2003) Mantle samples included in volcanic rocks: xenoliths and diamonds. In: Carlson RW (ed) Treatise on geochemistry, vol 2. The mantle and core. Elsevier, Amsterdam, pp 171–276

  • Pisarevsky SA, Natapov LM (2003) Siberia and Rodinia. Tectonophysics 375:221–245

    Article  Google Scholar 

  • Polyakov AI, Bagdasaryan GP (1986) On the age of young volcanoes in Eastern Siberia and character of compositional evolution of volcanites (in Russian). Geokhimiya No 3:311–317

    Google Scholar 

  • Press S, Witt G, Seck HA, Ionov DA, Kovalenko VI (1986) Spinel peridotite xenoliths from the Tariat Depression, Mongolia. I: major element chemistry and mineralogy of a primitive mantle xenolith suite. Geochim Cosmochim Acta 50:2587–2599

    Google Scholar 

  • Rasskazov SV, Boven A, Ivanov AV, Semenova VG (2000) Middle Quaternary volcanic impulse in the Olekma-Stanovoy mobile system: 40Ar–39 Ar dating of volcanics from the Tokinsky Stanovik. Tikhookean Geol 19:19–28

    Google Scholar 

  • Rosen OM, Condie KC, Natapov LM, Nozhkin AD (1994) Archean and Early Proterozoic evolution of the Siberian craton: a preliminary assessment. In: Condie KC (ed) Archean crustal evolution. Elsevier, Amsterdam, pp 411–459

  • Ross K, Elthon D (1997) Extreme incompatible trace-element depletion of diopside in residual mantle from south of the Kane Fracture Zone. Proc ODP Sci Res 153:277–284

    Google Scholar 

  • Schmidberger SS, Francis D (1999) Nature of the mantle roots beneath the North American craton: mantle xenolith evidence from Somerset island kimberlites. Lithos 48:195–216

    Article  CAS  Google Scholar 

  • Semenova VG, Solovyeva LV, Vladimirov BM (1984). Deep-seated inclusions in Alkali Basaltoids of the Tokinsky Stanovik (in Russian). Nauka, Novosibirsk, 119 p

  • Smethurst MA, Khramov AN, Torsvik TH (1998) The Neoproterozoic and Palaeozoic palaeomagnetic data for the Siberian platform: from Rodinia to Pangea. Earth Sci Rev 43:1–24

    Article  Google Scholar 

  • Smith D (2000) Insights into the evolution of the uppermost continental mantle from xenolith localities on and near the Colorado plateau and regional comparisons. J Geophys Res 105:16769–16781

    Google Scholar 

  • Sobolev NV (1977) Deep-seated inclusions in kimberlites and the problem of the composition of the upper mantle. Amer Geophys Union, Washington DC, 279 p

    Google Scholar 

  • Solovyeva LV, Semenova VG, Vladimirov BM, Zavyalova LL, Barankevich VG (1988) Glasses and quenched phases in a spinel lherzolite xenolith from the Tokinsky Stanovik alkalic basaltoids. Trans (Doklady) Acad Sci USSR, Earth Sci Sect 292:106–109

    Google Scholar 

  • Spetsius ZV, Serenko VP (1990) Composition of the continental upper mantle and lower crust beneath the Siberian platform (in Russian). Nauka, Moscow, 272 p

  • Streckeisen A (1976) To each plutonic rock its proper name. Earth Sci Rev 12:1–33

    Article  Google Scholar 

  • Takazawa E, Frey FA, Shimizu N, Obata M (2000) Whole rock compositional variations in an upper mantle peridotite (Horoman, Hokkaido, Japan): are they consistent with a partial melting process? Geochim Cosmochim Acta 64:695–716

    Google Scholar 

  • Takazawa E, Okayasu T, Satoh K (2003) Geochemistry and origin of the basal lherzolites from the northern Oman ophiolite (northern Fizh block). Geochemistry, Geophysics, Geosystems 4: Paper no 2001GC000232

  • Ukhanov AB, Ryabchikov ID, Kharkiv AD (1988) Lithospheric mantle of the Yakutian kimberlite province (in Russian). Nauka, Moscow, 286 p

  • Vannucci R, Bottazzi P, Wulff-Pedersen E, Neumann E-R (1998) Partitioning of REE, Y, Sr, Zr and Ti between clinopyroxene and silicate melts in the mantle under La Palma (Canary Islands): implications for the nature of the metasomatic agents. Earth Planet Sci Lett 158:39–51

    Article  CAS  Google Scholar 

  • Walter MJ (1999) Melting residues of fertile peridotite and the origin of cratonic lithosphere. In: Fei Y, Bertka CM, Mysen BO (eds) Mantle petrology: field observations and high-pressure experimentation. Spec Publ Geochem Soc no 6. Geochemical Society, Houston, pp 225–239

  • Walter MJ (2003) Melt extraction and compositional variability in mantle lithosphere. In: Carlson RW (ed) Treatise on geochemistry, vol 2. The mantle and core. Elsevier, Amsterdam, pp 363–394

  • Wiechert U, Ionov DA, Wedepohl KH (1997) Spinel peridotite xenoliths from the Atsagin-Dush volcano, Dariganga lava plateau, Mongolia: a record of partial melting and cryptic metasomatism in the upper mantle. Contrib Mineral Petrol 126:345–364

    Article  CAS  Google Scholar 

  • Xu X, O’Reilly SY, Griffin WL, Zhou X (2003) Enrichment of upper mantle peridotite: petrological, trace element and isotopic evidence in xenoliths from SE China. Chem Geol 198:163–188

    Article  CAS  Google Scholar 

  • Yaxley GM, Kamenetsky V (1999) In situ origin for glass in mantle xenoliths from southeastern Australia: insights from trace element compositions of glasses and metasomatic phases. Earth Planet Sci Lett 172:97–109

    Article  CAS  Google Scholar 

  • Zhang M, Suddaby P, O’Reilly SY, Qiu J (2000) Nature of the lithospheric mantle beneath the eastern part of the Central Asian fold belt: mantle xenolith evidence. Tectonophysics 328:131–156

    Article  CAS  Google Scholar 

  • Zheng J, O’Reilly SY, Griffin WL, Lu F, Zhang M, Pearson NJ (2001) Relict refractory mantle beneath the eastern North China block: significance for lithosphere evolution. Lithos 57:43–66

    Article  CAS  Google Scholar 

  • Zonenshain LP, Kuzmin MI, Natapov LM (1990) Geology of the USSR: a plate tectonic synthesis. Amer Geophys Union, Geodynamics Series 21, Washington DC, 242 p

    Google Scholar 

Download references

Acknowledgements

A. Kokovkin, M. Vikhtenko and M. Goroshko took part in the fieldwork. DAI thanks T. Bradley, G. Chazot, K. Furuta, N. Groschopf, D. Kuzmin, C. Merlet, E. Takazawa and M. Veschambre for assistance with sample preparation and analytical work. The fieldwork was organized by ITIG, Far Eastern Branch of the Russian Academy of Sciences. DAI’s trip to Siberia was funded by the Australian Research Council. The study was supported by funding from Fond Nationale de la Recherche Scientifique (FNRS – grant# FRFC: 2.4607.01 F) and Université Libre de Bruxelles (Belgium), Université de Montpellier II and Université Blaise Pascal (France), MPI-Chemie in Mainz as well as a W.Paul Award of the A.von Humboldt Foundation (Germany) to AVS. Some ICPMS analyses were done using the funding and facilities of the European Geochemical Facility at Bristol in 2002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri A. Ionov.

Additional information

Communicated by J. Hoefs

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ionov, D.A., Prikhodko, V.S., Bodinier, JL. et al. Lithospheric mantle beneath the south-eastern Siberian craton: petrology of peridotite xenoliths in basalts from the Tokinsky Stanovik. Contrib Mineral Petrol 149, 647–665 (2005). https://doi.org/10.1007/s00410-005-0672-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-005-0672-9

Keywords

Navigation