Skip to main content
Log in

Origin of Fe-rich lherzolites and wehrlites from Tok, SE Siberia by reactive melt percolation in refractory mantle peridotites

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Lherzolite–wehrlite (LW) series xenoliths from the quaternary Tok volcanic field in the southeastern Siberian craton are distinguished from the more common lherzolite–harzburgite (LH) series by (a) low Mg numbers (0.84–0.89) at high modal olivine (66–84%) and (b) widespread replacement of orthopyroxene (0–12%) and spinel by clinopyroxene (7–22%). The LW series peridotites are typically enriched in Ca, Fe, Mn and Ti, and depleted in Si, Ni and Cr relative to refractory LH series rocks (Mg number ≥0.89), which are metasomatised partial melting residues. Numerical modelling of Fe–Mg solid/liquid exchange during melt percolation demonstrates that LW series rocks can form by reaction of host refractory peridotites with evolved (Mg numbers 0.6–0.7), silica-undersaturated silicate melts at high melt/rock ratios, which replace orthopyroxene with clinopyroxene and decrease Mg numbers. This process is most likely related to underplating and fractionation of basaltic magma in the shallow mantle, which also produced olivine–clinopyroxene cumulates found among the Tok xenoliths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Batanova VG, Suhr G, Sobolev AV (1998) Origin of geochemical heterogeneity in the mantle peridotites from the Bay of Islands ophiolite, Newfoundland, Canada: ion probe study of clinopyroxenes. Geochim Cosmochim Acta 62:853–866

    Article  Google Scholar 

  • Bodinier J-L, Godard M (2003) Orogenic, ophiolitic and abyssal peridotites. In: Carlson RW (ed) Treatise on geochemistry, vol. 2. The mantle and core. Elsevier, Amsterdam, pp 103–170

  • Boyd FR, Pearson DG, Nixon PH, Mertzman SA (1993) Low-calcium garnet harzburgites from southern Africa: their relations to craton structure and diamond crystallisation. Contrib Mineral Petrol 113:352–366

    Article  Google Scholar 

  • Boyd FR, Pokhilenko NP, Pearson DG, Mertzman SA, Sobolev NV, Finger LW (1997) Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. Contrib Mineral Petrol 128:228–246

    Article  Google Scholar 

  • Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378

    Google Scholar 

  • Dalton JA, Wood BJ (1993) The compositions of primary carbonate melts and their evolution through wallrock reaction in the mantle. Earth Planet Sci Lett 119:511–525

    Article  Google Scholar 

  • Faul UH (1997) Permeability of partially molten upper mantle rocks from experiments and percolation theory. J Geophys Res 102:10299–10311

    Article  Google Scholar 

  • Fodor RV, Galar P (1997) A view into the subsurface of Mauna Kea volcano, Hawaii: crystallization processes interpreted through the petrology and petrography of gabbroic and ultramafic xenoliths. J Petrol 38:581–624

    Article  Google Scholar 

  • Frey FA, Green DH (1974) The mineralogy, geochemistry and origin of lherzolite inclusions in Victorian basanites. Geochim Cosmochim Acta 38:1023–1059

    Article  Google Scholar 

  • Frey FA, Prinz M (1978) Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis. Earth Planet Sci Lett 38:129–176

    Article  Google Scholar 

  • Godard M, Jousselin D, Bodinier J-L (2000) Relationships between geochemistry and structure beneath a palaeo-spreading centre: a study of the mantle section in the Oman ophiolite. Earth Planet Sci Lett 180:133–148

    Article  Google Scholar 

  • Grégoire M, Moine BN, O’Reilly SY, Cottin JY, Giret A (2000) Trace element residence and partitioning in mantle xenoliths metasomatised by highly alkaline, silicate- and carbonate-rich melts (Kerguelen Islands, Indian Ocean). J Petrol 41:477–509

    Article  Google Scholar 

  • Hanson GN, Langmuir CH (1978) Modelling of major elements in mantle–melt systems using trace element approaches. Geochim Cosmochim Acta 42:725–742

    Article  Google Scholar 

  • Harte B, Hunter RH, Kinny PD (1993) Melt geometry, movement and crystallization, in relation to mantle dykes, veins and metasomatism. Phil Trans R Soc London A 342:1–21

    Article  Google Scholar 

  • Hauri EH, Hart SR (1994) Constraints on melt migration from mantle plumes: A trace element study of peridotite xenoliths from Savai’i, Western Samoa. J Geophys Res 99:24301–24321

    Article  Google Scholar 

  • Hauri EH, Shimizu N, Dieu JJ, Hart SR (1993) Evidence for hotspot-related carbonatite metasomatism in the oceanic upper mantle. Nature 365:221–227

    Article  Google Scholar 

  • Hellebrand E, Snow JE, Hoppe P, Hofmann AW (2002) Garnet-field melting and late-stage refertilization in ‘residual’ abyssal peridotites from the Central Indian Ridge. J Petrol 43:2305–2338

    Article  Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314

    Article  Google Scholar 

  • Ionov DA, Savoyant L, Dupuy C (1992) Application of the ICP-MS technique to trace element analysis of peridotites and their minerals. Geostand Newsl 16:311–315

    Article  Google Scholar 

  • Ionov DA, Grégoire M, Prikhod’ko VS (1999) Feldspar–Ti-oxide metasomatism in off-cratonic continental and oceanic upper mantle. Earth Planet Sci Lett 165:37–44

    Article  Google Scholar 

  • Ionov D, Weis D, Shirey S, Prikhod’ko V, Chazot G (2001) Trace element and Os–Hf–Nd–Sr isotope systematics of pervasively metasomatised ancient lithospheric mantle at the southeastern rim of the Siberian craton. Eos Trans AGU, Fall Meet Suppl 82(47):V52B-01 (Abstract)

    Google Scholar 

  • Ionov DA, Bodinier J-L, Mukasa SB, Zanetti A (2002) Mechanisms and sources of mantle metasomatism: major and trace element compositions of peridotite xenoliths from Spitsbergen in the context of numerical modeling. J Petrol 43:2219–2259

    Article  Google Scholar 

  • Ionov DA, Ashchepkov I, Jagoutz E (2005a) The provenance of fertile off-craton lithospheric mantle: Sr–Nd isotope and chemical composition of garnet and spinel peridotite xenoliths from Vitim, Siberia. Chem Geol 217:41–75

    Article  Google Scholar 

  • Ionov DA, Prikhodko VS, Bodinier J-L, Sobolev AV, Weis D (2005b) Lithospheric mantle beneath the south-eastern Siberian craton: petrology of peridotite xenoliths in basalts from the Tokinsky Stanovik. Contrib Mineral Petrol (in press)

  • Jackson ED, Wright TL (1970) Xenoliths in the Honolulu volcanic series, Hawaii. J Petrol 11:405

    Google Scholar 

  • Kalfoun F, Ionov D, Merlet C (2002) HFSE residence and Nb–Ta ratios in metasomatised, rutile-bearing mantle peridotites. Earth Planet Sci Lett 199:49–65

    Article  Google Scholar 

  • Kelemen PB, Dick HJ, Quick JE (1992) Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature 358:635–641

    Article  Google Scholar 

  • Kiselev AI, Medvedev ME, Golovko GA (1979) Volcanism of the Baikal rift zone and problems of deep magma generation. Nauka, Novosibirsk, p 197 (in Russian)

  • Laurora A, Mazzucchelli M, Rivalenti G, Vannucci R, Zanetti A, Barbieri MA, Cingolani CA (2001) Metasomatism and melting in carbonated peridotite xenoliths from the mantle wedge: the Gobernador Gregores case (southern Patagonia). J Petrol 42:69–87

    Article  Google Scholar 

  • Lee C-T, Rudnick RL (1999) Compositionally stratified cratonic lithosphere: petrology and geochemistry of peridotite xenoliths the Labait volcano, Tanzania. In: Gurney JJ, Gurney JL, Pascoe MD et al (eds) Proc 7th Internatl Kimberlite Conf, vol 1. RedRoof Design, Cape Town, pp 503–521

  • Liu X, O’Neill HSC (2004) The effect of Cr2O3 on the partial melting of spinel lherzolite in the system CaO–MgO–Al2O3–SiO2–Cr2O3 at 1.1 GPa. J Petrol 45:2261–2286

    Article  Google Scholar 

  • Menzies MA, Hawkesworth CJ (1987) Mantle metasomatism. Academic, London, pp 500

    Google Scholar 

  • Menzies MA, Fan W, Zhang M (1993) Paleozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, Sino-Korean craton. Geol Soc London Spec Publ 76:71–81

    Article  Google Scholar 

  • Neumann E-R, Wulff-Pedersen E, Pearson NJ, Spenser EA (2002) Mantle xenoliths from Tenerife (Canary Islands): evidence for reactions between mantle peridotites and silicic carbonatite melts inducing Ca metasomatism. J Petrol 43:825–857

    Article  Google Scholar 

  • Niu Y (1997) Mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites. J Petrol 38:1047–1074

    Article  Google Scholar 

  • Parkinson IJ, Arculus RJ, Eggins SM (2003) Peridotite xenoliths from Grenada, Lesser Antilles Island Arc. Contrib Mineral Petrol 146:241–262

    Article  Google Scholar 

  • Pearson DG, Canil D, Shirey SB (2003) Mantle samples included in volcanic rocks: xenoliths and diamonds. In: Carlson RW (ed) Treatise on geochemistry, vol 2. The mantle and core. Elsevier, Amsterdam, pp 171–276

  • Peslier AH, Francis D, Ludden J (2002) The lithospheric mantle beneath continental margins: melting and melt–rock reaction in Canadian Cordillera xenoliths. J Petrol 43:2013–2047

    Article  Google Scholar 

  • Press S, Witt G, Seck HA, Ionov DA, Kovalenko VI (1986) Spinel peridotite xenoliths from the Tariat Depression, Mongolia. I: Major element chemistry and mineralogy of a primitive mantle xenolith suite. Geochim Cosmochim Acta 50:2587–2599

    Article  Google Scholar 

  • Rasskazov SV, Boven A, Ivanov AV, Semenova VG (2000) Middle Quaternary volcanic impulse in the Olekma-Stanovoy mobile system: 40Ar–39Ar dating of volcanics from the Tokinsky Stanovik (in Russian). Tikhookeanskaya Geologiya 19:19–28

    Google Scholar 

  • Semenova VG, Solovyeva LV, Vladimirov BM (1984) Deep-seated inclusions in alkali basaltoids of the Tokinsky Stanovik (in Russian). Nauka, Novosibirsk, p 119

    Google Scholar 

  • Shirey SB, Walker RJ (1998) The Re–Os isotope system in cosmochemistry and high-temperature geochemistry. Ann Rev Earth Planet Sci 26:423–500

    Article  Google Scholar 

  • Smith D (2000) Insights into the evolution of the uppermost continental mantle from xenolith localities on and near the Colorado Plateau and regional comparisons. J Geophys Res 105:16769–16781

    Article  Google Scholar 

  • Streckeisen A (1976) To each plutonic rock its proper name. Earth Sci Rev 12:1–33

    Article  Google Scholar 

  • Takazawa E, Frey FA, Shimizu N, Obata M (2000) Whole rock compositional variations in an upper mantle peridotite (Horoman, Hokkaido, Japan): are they consistent with a partial melting process. Geochim Cosmochim Acta 64:695–716

    Article  Google Scholar 

  • Takazawa E, Okayasu T, Satoh K (2003) Geochemistry and origin of the basal lherzolites from the northern Oman ophiolite (northern Fizh block). Geochem Geophys Geosyst 4. DOI 10.1029/2001GC000232

  • Tarantola A, Valette B (1982) Generalized non-linear inverse problems solved using least-squares criterion. Rev Geophys Space Phys 20:219–232

    Google Scholar 

  • Tommasi A, Godard M, Coromina G, Dautria J-M, Barsczus H (2004) Seismic anisotropy and compositionally induced velocity anomalies in the lithosphere above mantle plumes: a petrological and microstructural study of mantle xenoliths from French Polynesia. Earth Planet Sci Lett 227:539–556

    Article  Google Scholar 

  • Toramaru A, Fujii N (1986) Connectivity of melt phase in a partially molten peridotite. J Geophys Res 91:9239–9252

    Article  Google Scholar 

  • Ulmer P (1989) The dependence of the Fe2+–Mg cation-partitioning between olivine and basaltic liquid on pressure, temperature and composition: an experimental study to 30 kbar. Contrib Mineral Petrol 101:261–273

    Article  Google Scholar 

  • Vernières J, Godard M, Bodinier J-L (1997) A plate model for the simulation of trace element fractionation during partial melting and magma transport in the Earth’s upper mantle. J Geophys Res 102:24771–24784

    Article  Google Scholar 

  • Walter MJ (2003) Melt extraction and compositional variability in mantle lithosphere. In: Carlson RW (ed) Treatise on geochemistry, vol 2. The mantle and core. Elsevier, Amsterdam, pp 363–394

  • Wiechert U, Ionov DA, Wedepohl KH (1997) Spinel peridotite xenoliths from the Atsagin-Dush volcano, Dariganga lava plateau, Mongolia: a record of partial melting and cryptic metasomatism in the upper mantle. Contrib Mineral Petrol 126:345–364

    Article  Google Scholar 

  • Wilshire HG, Shervais JW (1975) Al-augite and Cr-diopside ultramafic xenoliths in basaltic rocks from western United States. Phys Chem Earth 9:257–272

    Article  Google Scholar 

  • Xu YG, Mercier J-CC, Menzies MA, Ross JV, Harte B, Lin C, Shi L (1996) K-rich glass-bearing wehrlite xenoliths from Yitong, northeastern China: petrological and chemical evidence for mantle metasomatism. Contrib Mineral Petrol 125:406–420

    Article  Google Scholar 

  • Xu Y-G, Menzies MA, Thirlwall MF, Huang X-L, Liu Y, Chen X-M (2003) ‘Reactive’ harzburgites from Huinan, NE China: products of the lithosphere–asthenosphere interaction during lithospheric thinning? Geochim Cosmochim Acta 67:487–505

    Article  Google Scholar 

  • Yaxley GM, Crawford AJ, Green DH (1991) Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth Planet Sci Lett 107:305–317

    Article  Google Scholar 

  • Zhu W, Hirth G (2003) A network model for permeability in partially molten rocks. Earth Planet Sci Lett 212:407–416

    Article  Google Scholar 

  • Zonenshain LP, Kuzmin MI, Natapov LM (1990) Geology of the USSR: a plate tectonic synthesis. Am Geophys Union Geodynam Ser 21:242

    Google Scholar 

Download references

Acknowledgements

DAI thanks V. Prikhodko for help with fieldwork and acknowledges financial, analytical and other contributions from S. Shirey, D. Weis, A. Hofmann, G. Brey, A. Sobolev, E. Takazawa, D. Kuzmin, C. Merlet, G. Chazot, M. Veschambre, S. Portales. Reviews by M. Seyler, M. Grégoire and G. Sühr and editorial comments of J. Hoefs helped to improve the paper and are highly appreciated. The fieldwork at Tok was organised by ITIG, Far Eastern Branch of Russian Academy of Sciences. Some funding and assistance were provided by Australian Research Council, DTM-CIW (Washington, DC, USA), Université Blaise Pascal at Clermont-Ferrand (France) and Belgian FNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri A. Ionov.

Additional information

Communicated by J. Hoefs

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ionov, D.A., Chanefo, I. & Bodinier, JL. Origin of Fe-rich lherzolites and wehrlites from Tok, SE Siberia by reactive melt percolation in refractory mantle peridotites. Contrib Mineral Petrol 150, 335–353 (2005). https://doi.org/10.1007/s00410-005-0026-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-005-0026-7

Keywords

Navigation