Skip to main content

4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon

Abstract

Analysis of δ18O in igneous zircons of known age traces the evolution of intracrustal recycling and crust-mantle interaction through time. This record is especially sensitive because oxygen isotope ratios of igneous rocks are strongly affected by incorporation of supracrustal materials into melts, which commonly have δ18O values higher than in primitive mantle magmas. This study summarizes data for δ18O in zircons that have been analyzed from 1,200 dated rocks ranging over 96% of the age of Earth. Uniformly primitive to mildly evolved magmatic δ18O values are found from the first half of Earth history, but much more varied values are seen for younger magmas. The similarity of values throughout the Archean, and comparison to the composition of the “modern” mantle indicate that δ18O of primitive mantle melts have remained constant (±0.2‰) for the past 4.4 billion years. The range and variability of δ18O in all Archean zircon samples is subdued (δ18O(Zrc)=5–7.5‰) ranging from values in high temperature equilibrium with the mantle (5.3± 0.3‰) to slightly higher, more evolved compositions (6.5–7.5‰) including samples from: the Jack Hills (4.4–3.3 Ga), the Beartooth Mountains (4.0–2.9 Ga), Barberton (3.5–2.7 Ga), the Superior and Slave Provinces (3.0 to 2.7 Ga), and the Lewisian (2.7 Ga). No zircons from the Archean have been analyzed with magmatic δ18O above 7.5‰. The mildly evolved, higher Archean values (6.5–7.5‰) are interpreted to result from exchange of protoliths with surface waters at low temperature followed by melting or contamination to create mildly elevated magmas that host the zircons. During the Proterozoic, the range of δ18O(Zrc) and the highest values gradually increased in a secular change that documents maturation of the crust. After ∼1.5 Ga, high δ18O zircons (8 to >10‰) became common in many Proterozoic and Phanerozoic terranes reflecting δ18O(whole rock) values from 9 to over 12‰. The appearance of high δ18O magmas on Earth reflects nonuniformitarian changes in the composition of sediments, and rate and style of recycling of surface-derived material into magmas within the crust.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Armstrong RL (1981) Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental-growth earth. Phil Trans Roy Soc Lond A 301:443

    Article  Google Scholar 

  2. Armstrong RL (1991) The persistent myth of crustal growth. Austral J Earth Sci 38:613–630

    Article  Google Scholar 

  3. Balsley SD, Gregory RT (1998) Low-δ18O silicic magmas: why are they so rare? Earth Planet Sci Lett 162:123–136

    Article  Google Scholar 

  4. Bennett VC (2003) Compositional evolution of the mantle. Treat Geochem 2:493–519

    Google Scholar 

  5. Bindeman IN, Valley JW (2000) Formation of low-δ18O rhyolites after caldera collapse at Yellowstone, Wyoming, USA. Geology 28:719–722

    Article  Google Scholar 

  6. Bindeman IN, Valley JW (2001) Low-δ18O rhyolites from Yellowstone: magmatic evolution based on analyses of zircons and individual phenocrysts. J Petrol 42:1491–1517

    Article  Google Scholar 

  7. Bindeman IN, Valley JW (2002) Oxygen isotope study of the Long Valley magma system, California: isotope thermometry and convection in large silicic magma bodies. Contrib Mineral Petrol 144:185–205

    Article  Google Scholar 

  8. Bindeman IN, Valley JW (2003) Rapid generation of both high- and low-δ18O, large-volume silicic magmas at the Timber Mountain/Oasis Valley caldera complex, Nevada. Geol Soc Am Bull 115:581–595

    Article  Google Scholar 

  9. Bindeman IN, Ponomareva VV, Bailey JC, Valley JW (2004) Volcanic arc of Kamchatka: a province with high δ18O magma sources and large-scale 18O/16O depletion of the upper crust. Geochim Cosmochim Acta 68:841–865

    Article  Google Scholar 

  10. Blatt H (1987) Perspectives: oxygen isotopes and the origin of quartz. J Sed Pet 57:373–377

    Google Scholar 

  11. Bleeker W (2002) Archaean tectonics: a review, with illustrations from the Slave Craton. Geol Soc Spec Pub 199:151–181

    Google Scholar 

  12. Bowring SA, Housh T (1995) The Earth’s early evolution. Science 269:1535–1540

    PubMed  Article  Google Scholar 

  13. Burdett JW, Grotzinger JP, Arthur MA (1990) Did major changes in the stable-isotope composition of Proterozoic seawater occur? Geology 18:227–230

    Article  Google Scholar 

  14. Campbell IH (2003) Constraints on continental growth models from Nb/U ratios in the 3.5 Ga Barberton and other Archaean basalt-komatiite suites. Am J Sci 303:319–351

    Article  Google Scholar 

  15. Cavosie AJ, Wilde SA, Liu D, Weiblen PW, Valley JW (2004) Internal zoning and U-Th-Pb chemistry of Jack Hills detrital zircons: a mineral record of early Archean to Mesoproterozoic (4348−1576 Ma) magmatism. Precam Res 135:251–279

    Article  Google Scholar 

  16. Cavosie AJ, Valley JW, Wilde SA, EIMF (2005) Magmatic δ18O in 4400–3900 Ma detrital zircons: a record of the alteration and recycling of crust in the Early Archean. Earth Planet Sci Lett 235:663–681

    Article  Google Scholar 

  17. Chappell BW, White AJR (2001) Two contrasting granite types: 25 years later. Austral J Ear Sci 48:489–499

    Article  Google Scholar 

  18. Chen D, Deloule E, Cheng H, Xia Q, Wu Y (2003) Preliminary study of microscale zircon oxygen isotopes for Dabie-Sulu metamorphic rocks: ion probe in situ analyses. Chin Sci Bull 48:1670–1678

    Article  Google Scholar 

  19. Compston W, Pidgeon RT (1986) Jack Hills, evidence of more very old detrital zircons in Western Australia. Nature 321:766–769

    Article  Google Scholar 

  20. Condie KC (1993) Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem Geol 104:1–37

    Article  Google Scholar 

  21. Condie KC (1998) Episodic continental growth and supercontinents: a mantle avalanche connection? Earth Planet Sci Lett 163:97–108

    Article  Google Scholar 

  22. Condie KC (2000) Episodic continental growth models: after thoughts and extensions. Tectonophysics 322:53–162

    Article  Google Scholar 

  23. Condie KC, Des Marais DJ, Abbott D (2001) Precambrian superplumes and supercontinents: a record in black shales, carbon isotopes, and paleoclimates? Precam Res 106:239–260

    Article  Google Scholar 

  24. Eiler JM (2001) Oxygen isotope variations of basaltic lavas and upper mantle rocks. In: Valley JW, Cole DR (eds) Stable isotope geochemistry, Reviews in Mineralogy and Geochemistry, vol 43. Mineralogical Society of America/Geochemical Society, Washington, DC, pp 319–364

    Google Scholar 

  25. Eiler JM, McInnes B, Valley JW, Graham CM, Stolper EM (1998) Oxygen isotope evidence for slab-derived fluids in the sub-arc mantle. Nature 393:777–781

    Article  Google Scholar 

  26. Elliott BA, Peck WH, Ramo OT, Vaasjoki M, Nironen M (2005) Magmatic zircon oxygen isotopes of 1.88−1.87 Ga orogenic and 1.65−1.54 Ga anorogenic magmatism in Finland. Mineral Petrol (in press)

  27. Eriksson KA (1995) Crustal growth, surface processes, and atmospheric evolution on the early Earth. Geol Soc Spec Pub 95:11–25

    Google Scholar 

  28. Ferreira VP, Valley JW, Sial AN, Spicuzza MJ (2003) Oxygen isotope compositions and magmatic epidote from two contrasting metaluminous granitoids, NE Brazil. Contrib Mineral Petrol 145:205–216

    Article  Google Scholar 

  29. Gilliam CE, Valley JW (1997) Low δ18O magma, Isle of Skye, Scotland: evidence from zircons. Geochim Cosmochim Acta 61:4975–4981

    Article  Google Scholar 

  30. Gregory RT, Taylor HP (1981) An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman: evidence for δ18O buffering of the oceans by deep (> 5 km) seawater-hydrothermal circulation at mid-ocean ridges. J Geophys Res 86:2737–2755

    Google Scholar 

  31. Hanchar JM, Hoskin PWO (eds) (2003) Zircon. Reviews in Mineralogy and Geochemistry, vol 53. Mineralogical Society of America/Geochemical Society, Washington, DC, p 500

  32. Harmon RS, Hoefs J (1995) Oxygen isotope heterogeneity of the mantle deduced from global 18O systematics of basalts from different geotectonic settings. Contrib Mineral Petrol 120:95–114

    Google Scholar 

  33. Hildreth W, Christiansen RL, O’Neil JR (1984) Catastrophic isotopic modification of rhyolitic magma at times of caldera subsidence, Yellowstone Plateau volcanic field. J Geophys Res 89:8339–8369

    Google Scholar 

  34. Hurley PM, Rand JR (1969) Pre-drift continental nuclei. Science 164:1229–1242

    Article  Google Scholar 

  35. Kemp AIS, Hawkesworth CJ (2003) Granitic perspectives on the generation and secular evolution of the continental crust. Treat Geochem 3:349–410

    Google Scholar 

  36. King EM (1997) Oxygen isotope study of igneous rocks from the Superior Province, Canada. MSc Thesis, University of Wisconsin

  37. King EM (2001) Oxygen isotope study of magmatic source and alteration of granitic rocks in the western United States and the Superior Province, Canada. PhD Thesis, University of Wisconsin

  38. King EM, Valley JW (2001) The source, magmatic contamination, and alteration of the Idaho Batholith. Contrib Mineral Petrol 142:72–88

    Article  Google Scholar 

  39. King EM, Barrie CT, Valley JW (1997) Hydrothermal alteration of oxygen isotope ratios in quartz phenocrysts, Kidd Creek Mine, Ontario: magmatic values are preserved in zircon. Geology 25:1079–1082

    Article  Google Scholar 

  40. King EM, Valley JW, Davis DW, Edwards GR (1998) Oxygen isotope ratios of Archean plutonic zircons from granite-greenstone belts of the Superior Province: Indicator of magmatic source. Precam Res 92:365–387

    Article  Google Scholar 

  41. King EM, Valley JW, Davis DW (2000) Oxygen isotope evolution of volcanic rocks at the Sturgeon Lake volcanic complex, Ontario. Can J Earth Sci 37:39–50

    Article  Google Scholar 

  42. King EM, Valley JW, Davis DW, Kowallis BJ (2001) Empirical determination of oxygen isotope fractionation factors for titanite with respect to zircon and quartz. Geochim Cosmochim Acta 65:3165–3175

    Article  Google Scholar 

  43. King EM, Valley JW, Stockli DF, Wright JE (2004) Oxygen isotope trends of granitic magmatism in the Great Basin: location of the Precambrian craton boundary as reflected in zircons. Geol Soc Am Bull 116:451–462

    Article  Google Scholar 

  44. Knauth LP, Lowe DR (2003) High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Geol Soc Am Bull 115:566–580

    Article  Google Scholar 

  45. Kramers JD (2002) Global modeling of continent formation and destruction through geological time and implications for CO2 drawdown in the Archaean Eon. Geol Soc Spec Pub 199:259–274

    Google Scholar 

  46. Kröner A, Layer PW (1992) Crust formation and plate motion in the early Archean. Science 256:1405–1411

    Article  Google Scholar 

  47. Lackey JS (2005) The magmatic and alteration history of the Sierra Nevada batholith as recorded by oxygen isotope ratios in zircon, titanite, garnet, and quartz. PhD Thesis, University of Wisconsin

  48. Lackey JS, Valley JW, Saleeby JB (2005a) Supracrustal input to magmas in the deep crust of Sierra Nevada batholith: evidence from high-δ18O zircon. Earth Planet Sci Lett 235:315–330

    Article  Google Scholar 

  49. Lackey JS, Valley JW, Hinke HJ (2005b) Deciphering the source and contamination history of peraluminous magmas using δ18O of accessory minerals: examples from garnet-bearing granitoids of the Sierra Nevada batholith. Contrib Mineral Petrol (in press)

  50. Land LS, Lynch FL (1996) δ18O values of mudrocks: more evidence for an 18O-buffered ocean. Geochim Cosmochim Acta 60:3347–3352

    Article  Google Scholar 

  51. Longstaffe FJ, Schwarcz HP (1977) 18O/16O of Archean clastic metasedimentary rocks: a petrogenetic indicator for Archean gneisses? Geochim Cosmochim Acta 41:1303–1312

    Article  Google Scholar 

  52. Lowe DR (1992) Major events in the geological development of the Precambrian Earth. In: Schopf JW, Klein C (eds) The Proterozoic biosphere a multidisciplinary study. Cambridge University Press, Cambridge, pp 67–75

    Google Scholar 

  53. Lowe DR (1994) Archean greenstone-related sedimentary rocks. Dev Precam Geol 11:121–169

    Google Scholar 

  54. Lowe DR, Tice MM (2004) Geologic evidence for Archean atmospheric and climatic evolution: fluctuating levels of CO2, CH4, and O2 with an overriding tectonic control. Geology 32:493–496

    Article  Google Scholar 

  55. Lowry D, Appel PWU, Rollinson HR (2003) Oxygen isotopes of an early Archaean layered ultramafic body, southern West Greenland: implications for magma source and post-intrusion history. Precam Res 126:273–288

    Article  Google Scholar 

  56. Lugovaya IP, Krivdik SG, Ponomarenko AN (2001) Oxygen isotope composition of zircons in granites and alkaline rocks of the Ukrainian Shield [Russian]. Mineral J 23:38–41

    Google Scholar 

  57. Marcantonio F, McNutt RH, Dickin AP, Heaman LM (1990) Isotopic evidence for the crustal evolution of the Frontenac Arch in the Grenville Province of Ontario, Canada. Chem Geol 83:297–314

    Article  Google Scholar 

  58. McLennan SM, Taylor SR, Hemming SR (2005) Composition, differentiation, and evolution of continental crust: constraints from sedimentary rocks and heat flow. In: Brown M, Rushmer T (eds) Evolution and differentiation of the continental crust. Cambridge University Press, Cambridge, pp 93−135

    Google Scholar 

  59. Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the earth’s surface 4,300 Myr ago. Nature 409:178–181

    Article  PubMed  Google Scholar 

  60. Monani S, Valley JW (2001) Oxygen isotope ratios of zircon: magma genesis of low δ18O granites from the British Tertiary igneous province, western Scotland. Earth Planet Sci Lett 184:377–392

    Article  Google Scholar 

  61. Muehlenbachs K (1998) The oxygen isotopic composition of the oceans, sediments and the seafloor. Chem Geol 145:263–273

    Article  Google Scholar 

  62. Mueller PA, Wooden JL, Nutman AP (1992) 3.96 Ga zircons from an Archean quartzite, Beartooth Mountains, Montana. Geology 20:327–330

    Article  Google Scholar 

  63. Mueller PA, Wooden JL, Nutman AP, Mogk DW (1998) Early Archean crust in the northern Wyoming Province: evidence from U-Pb ages of detrital zircons. Precam Res 91:295–307

    Article  Google Scholar 

  64. O’Connor YL, Morrison J (1999) Oxygen isotope constraints on the petrogenesis of the Sybille Intrusion of the Proterozoic Laramie anorthosite complex. Contrib Mineral Petrol 136:81–91

    Article  Google Scholar 

  65. O’Neil JR, Chappell BW (1977) Oxygen and hydrogen isotope relations in the Berridale batholith. J Geol Soc Lond 133:559–571

    Article  Google Scholar 

  66. O’Neil JR, Shaw SE, Flood RH (1977) Oxygen and hydrogen isotope compositions as indicators of granite genesis in the New England Batholith, Australia. Contrib Mineral Petrol 62:313–328

    Article  Google Scholar 

  67. Pan Y, Fleet ME (1995) Geochemistry and origin of cordierite-orthoamphibole gneiss and associated rocks at an Archaean volcanogenic massive sulphide camp; Manitouwadge, Ontario, Canada. Precam Res 74:73–89

    Article  Google Scholar 

  68. Peck WH (2000) Oxygen isotope studies of Grenville Metamorphism and Magmatism. PhD Thesis, University of Wisconsin-Madison

  69. Peck WH, Valley JW (2005) The Archean environment. In: Gornitz V (ed) Encyclopedia of paleoclimatology and Ancient Environments. Kluwer, New York (accepted)

  70. Peck WH, King EM, Valley JW (2000) Oxygen isotope perspective on Precambrian crustal growth and maturation. Geology 28:363–366

    Article  Google Scholar 

  71. Peck WH, Valley JW, Wilde SA, Graham CM (2001) Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: ion microprobe evidence for high δ18O continental crust and oceans in the early Archean. Geochim Cosmochim Acta 65:4215–4229

    Article  Google Scholar 

  72. Peck WH, Valley JW, Corriveau L, Davidson A, McLelland J, Farber D (2004) Constraints on terrane boundaries and origin of 1.18 to 1.13 Ga granitoids of the Southern Grenville Province from oxygen isotope ratios of zircon. In: Tollo RP, McLelland J, Corriveau L, Bartholomew MJ (eds) Proterozoic evolution of the Grenville orogen in North America, Memoir, vol 197. Geological Society of America, Boulder, CO, pp 163–181

  73. Perry EC, Lefticariu L (2003) Formation and geochemistry of Precambrian cherts. Treat Geochem 7:99–113

    Google Scholar 

  74. Rumble D, Giorgis D, Ireland T, Zhang Z, Xu H, Yui T-F, Yang J, Xu Z, Liou J-G (2002) Low δ18O zircons, U-Pb dating, and the age of the Qinglongshan oxygen and hydrogen isotope anomaly near Donghai in Jiangsu Province, China. Geochim Cosmochim Acta 66:2299–2306

    Article  Google Scholar 

  75. Savin SM, Epstein S (1970) The oxygen and hydrogen isotope geochemistry of clay minerals. Geochim Cosmochim Acta 34:5–42

    Google Scholar 

  76. Shieh YN (1985) High−18O granitic plutons from the Frontenac axis, Grenville Province of Ontario, Canada. Geochim Cosmochim Acta 49:117–123

    Article  Google Scholar 

  77. Shieh YN, Schwarcz HP (1978) The oxygen isotope composition of the surface crystalline rocks of the Canadian Shield. Can J Earth Sci 15:1773–1782

    Google Scholar 

  78. Shields G, Veizer J (2002) Precambrian marine carbonate isotope database: Version 1.1. Geochem Geophys Geosyst 3. DOI 10.1029/2001GC000266

  79. Shirey SB, Hanson GN (1984) Mantle-derived Archaean monzodiorites and trachyandesites. Nature 310:222–224

    Article  Google Scholar 

  80. Simon L, Lecuyer C (2002) Continental recycling: the oxygen isotope point of view. Geochim Cosmochim Acta 66:717

    Google Scholar 

  81. Stein M, Hoffman AW (1994) Mantle plumes and episodic crustal growth. Nature 372:63–68

    Article  Google Scholar 

  82. Stern RA, Hanson GN (1991) Archean high-Mg granodiorite: a derivative of light rare earth element-enriched monzodiorite of mantle origin. J Petrol 32:201–238

    Google Scholar 

  83. Sylvester PJ (1994) Archean granite plutons. Dev Precam Geol 11:261–314

    Article  Google Scholar 

  84. Sylvester PJ (ed) (2000) Continent formation, growth and recycling. Tectonophysics, vol 322. Elsevier, Amsterdam, pp 1–202

  85. Taylor HP (1986) Igneous rocks: II. Isotopic case studies of circumpacific magmatism. In: Valley JW, Taylor HP Jr, O’Neil JR (eds) Stable isotopes in high temperature geological processes, Reviews in Mineralogy, vol 16. Mineralogical Society of America, p 273–317

  86. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Edinburgh, p 312

    Google Scholar 

  87. Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265

    Article  Google Scholar 

  88. Taylor HP, Sheppard SMF (1986) Igneous rocks: I. Processes of isotopic fractionation and isotope systematics. In: Valley JW, Taylor HP Jr, O’Neil JR (eds) Stable isotopes in high temperature geological processes, Reviews in Mineralogy, vol 16. Mineralogical Society of America, pp 227–271

  89. Trail D, Mojzsis SJ, Harrison TM (2005) Hadean crustal processes revealed from oxygen isotopes and U-Th-Pb depth profiling of pre-4 Ga detrital zircons from Western Australia. Lunar Planet Sci Conf, Houston, XXXVI: 2223, abstract

  90. Valley JW (2003) Oxygen isotopes in zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon, Reviews in Mineralogy and Geochemistry, vol 53. Mineralogical Society of America/Geochemical Society, Washington, DC, pp 343–385

  91. Valley JW, Chiarenzelli JR, McLelland JM (1994) Oxygen isotope geochemistry of zircon. Earth Planet Sci Lett 126:187–206

    Article  Google Scholar 

  92. Valley JW, Kitchen N, Kohn MJ, Niendorf CR, Spicuzza MJ (1995) UWG-2, a garnet standard for oxygen isotope ratios: strategies for high precision and accuracy with laser heating. Geochim Cosmochim Acta 59:5223–5231

    Article  Google Scholar 

  93. Valley JW, Kinny PD, Schulze DJ, Spicuzza MJ (1998) Zircon Megacrysts from Kimberlite: Oxygen Isotope Variability Among Mantle Melts. Contrib Mineral Petrol 133:1–11

    Article  Google Scholar 

  94. Valley JW, Peck WH, King EM, Wilde SA (2002) A cool early Earth. Geology 30:351–354

    Article  Google Scholar 

  95. Valley JW, Bindeman IN, Peck WH (2003) Empirical calibration of oxygen isotope fractionation in zircon. Geochim Cosmochim Acta 67:3257–3266

    Article  Google Scholar 

  96. Veizer J (1983) Geologic evolution of the archean-early proterozoic Earth. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, Princeton, NJ, pp 240–259

    Google Scholar 

  97. Veizer J, Jansen SL (1985) Basement and sedimentary recycling: 2, Time dimension to global tectonics. J Geol 93:625–643

    Google Scholar 

  98. Veizer J, Mackenzie FT (2003) Evolution of sedimentary rocks. Treat Geochem 7:369–407

    Google Scholar 

  99. Walker JCG, Lohmann KC (1989) Why the oxygen isotopic composition of seawater changes with time. Geo Res Lett 16:323–326

    Google Scholar 

  100. Wallmann K (2001) The geological water cycle and the evolution of marine δ18O values. Geochim Cosmochim Acta 65:2469–2485

    Article  Google Scholar 

  101. Wei C-S, Zheng Y-F, Zhao Z-F, Valley JW (2002) Oxygen and neodymium isotope evidence for recycling of juvenile crust in Northeast China. Geology 30:375–378

    Article  Google Scholar 

  102. Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178

    Article  PubMed  Google Scholar 

  103. Windley BF (1995) The evolving continents. John Wiley and Sons, Chichester, UK, p 526

    Google Scholar 

  104. de Wit MJ (1998) On Archean granites, greenstones, cratons and tectonics: does the evidence demand a verdict? Precam Res 91:181–226

    Article  Google Scholar 

  105. Zhao Z-F, Zheng Y-F, Wei C-S, Wu Y-B (2004) Zircon isotope evidence for recycling of subducted continental crust in post-collisional granitoids from the Dabie terrane in China. Geophys Res Lett 31. DOI 10:1029/2004GL021061

    Google Scholar 

  106. Zheng Y-F, Wu Y-B, Chen F-K, Gong B, Li L, Zhao Z-F (2004) Zircon U-Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic. Geochim Cosmochim Acta 68:4145–4165

    Article  Google Scholar 

Download references

Acknowledgments

We thank the following people who have provided samples, assisted, or collaborated in studies of these zircons: John Aleinikoff, Tucker Barrie, Pat Bickford, Lance Black, Otto van Breemen, James Carl, Jeff Chiarenzelli, Jim Chen, Fernando Corfu, Louise Corriveau, Tony Davidson, Don Davis, John Eiler, Brent Elliott, Ron Emslie, Dave Farber, Frank Florence, Carrie Gilliam, Matthew Grant, Mike Hamilton, Hans Hinke, Martha House, Yngvar Isachsen, Paul Karabinos, Yaron Katzir, Alan Kennedy, Peter Kinny, Nami Kitchen, Bart Kowalis, Tom Krogh, Dunyi Liu, Jim Mattinson, Jim McLelland, Dave Mogk, Salma Monani, Sam Mukasa, Sasha Nemchin, Randy Parrish, Lola Pereira, Bob Pidgeon, Helcio Prazeres Filho, Kent Ratajeski, Greg Roselle, Jason Saleeby, Dan Schulze, Danny Stockli, Matti Vaasjoki, Randy Van Schmus, Lee Silver, Sorena Sorensen, Beth Valaas, Julie Vry, Simon Wilde, Joe Wooden, and Jim Wright. Colin Graham and John Craven collaborated in ion probe studies of δ18O at the Edinburgh Ion Microprobe Facility, which is supported by NERC. Brian Hess aided with sample preparation. Mary Diman drafted the figures. Vicki Bennett and Jan Kramers made helpful reviews. This research was supported by the National Science Foundation (EAR93-04372, 96-28142, 99-02973, 02-07340) and the U.S. Department of Energy (93ER14389).

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. W. Valley.

Additional information

Communicated by J. Hoefs

Electronic supplementary material

Appendices

Appendix 1

Oxygen isotope ratio, crystallization age, and location for magmatic zircons. Whole rock weight percentage SiO2 is tabulated where available. References to previous work include published and unpublished sources. Table given as ESM, available at http://dx.doi.org/10.1007/s00410-005-0025-8

Appendix 2 (Fig. 12)

Fig. 12
figure12

Plot of δ18O(Zrc) vs. SiO2 content for magmatic zircons and their host rocks for 90 samples from the Neoproterozoic of Brazil

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Valley, J.W., Lackey, J.S., Cavosie, A.J. et al. 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib Mineral Petrol 150, 561–580 (2005). https://doi.org/10.1007/s00410-005-0025-8

Download citation

Keywords

  • Zircon
  • Continental Crust
  • Detrital Zircon
  • Volcanogenic Massive Sulfide Deposit
  • Igneous Zircon