Skip to main content

Advertisement

Log in

SIMS analyses on trace and rare earth elements in coexisting clinopyroxene and mica from minette mafic enclaves in potassic syenites crystallized under high pressures

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Trace and rare earth element contents were determined by SIMS technique in clinopyroxene and mica crystals from minette lamprophyric enclaves in a potassic syenite host. This co-mingled system was crystallized at high pressures, which varied about 3–5 GPa, as indicated by the presence of K-clinopyroxenes and pyrope-rich garnet with measurable amounts of K2O and Na2O, among the near-liquidus phases. Major and trace element composition of these lamprophyric enclaves is quite similar to those observed in silica-rich lamproites, suggesting that similar sources were involved in their origin. In a general view, the concentrations of most trace and rare earth elements in clinopyroxene of the studied enclaves are higher than those referred to by other authors. Clinopyroxene/melt partition coefficient for most trace elements are close to determinations in alkali-basalts and lamproites from Leucite Hills, with considerable differences relative to Gaussberg lamproites. Furthermore, these partition data are completely different from those determined for potassic lavas crystallized under crustal pressures. Spidergrams for clinopyroxenes exhibit negative-Sr anomalies relative to LREE, which have been associated by most authors to crystallization under low-pressures, out of garnet stability field. The presence of pyrope together with K-clinopyroxene excludes such hypotheses for the studied enclaves. Y and HREE are concentrated in clinopyroxene, whilst the other trace elements have Kd<1. LIL elements, except Rb, have incompatible (Kd<1) behavior in phlogopite. The high partition coefficient for Nb (Kd>3) determined in the studied phlogopite is unusual in lamproites, lamprophyres, and basalts, but frequently observed in phlogopite from metasomatic mantle samples, as well as in acid magmas. This partition value may indicate the lack of other mineral phase with high partition for this element during crystallization, and may be enhanced by the liquid composition progressively closer to alkali feldspar, an unsuitable structure for six-coordinated cations. Ce/Yb, Rb/Sr, and Zr/Hf ratios in clinopyroxene and mica suggest that the minettic magma could produce the host Piquiri potassic syenite by fractional crystallization. This hypothesis is not consistent with Ba concentrations in clinopyroxene and mica, which suggest that a Ba-bearing phase (e.g. alkali feldspar) should be among the fractionated phases in order to produce the potassic syenites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bau M (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib Miner Petrol 123:323–333

    Article  CAS  Google Scholar 

  • Bergman SC (1987) Lamproites and other potassium-rich igneous rocks: a review of their occurrence, mineralogy and geochemistry. In: Fitton JG, Upton BGJ (eds) Alkaline igneous rocks, vol 30. Geological Society London Spec Publications, pp 103–190

  • Bitencourt MF, Nardi LVS (2000) Tectonic setting and sources of magmatism related to the Southern Brazilian Shear Belt. Rev Brasil Geoc 30:184–187

    Google Scholar 

  • Blundy JD, Robinson JAC, Wood BJ (1998) Heavy REE are compatible in clinopyroxene on the spinel lherzolite solidus. Earth Planet Sci Lett 160:493–504

    Article  CAS  Google Scholar 

  • Bottazzi P, Ottolini L, Vannucci R (1992) SIMS analyses of rare earth elements in natural minerals and glasses: an investigation of structural matrix on ion yields. Scanning 14:160–168

    CAS  Google Scholar 

  • Chazot G, Menzies M, Harte B (1996) Determination of partition coefficients between apatite, clinopyroxene, amphibole, and melt in natural spinel lherzolites from Yemen: implications for wet melting of the lithospheric mantle. Geochem Cosmochim Acta 60:423–437

    Article  CAS  Google Scholar 

  • David K, Schiano P, Allegre CJ (2000) Assessment of the Zr/Hf fractionation in oceabic basalts and continental materials during petrogenetic processes. Earth Planet Sci Lett 178:285–301

    Article  CAS  Google Scholar 

  • Drake MJ, Weill DF (1972) New rare earth element standards for electron microprobe analysis. Chem Geol 10:179–181

    Article  CAS  Google Scholar 

  • Edgar AD, Vukadinovic D (1992) Implications of experimental petrology to the evolution of ultrapotassic rocks. Lithos 28:205–220

    Article  CAS  Google Scholar 

  • Edgar AD, Vukadinovic D (1993) Potassium-rich clinopyroxene in the mantle: an experimental investigation of a K-rich lamproites up to 60 kbar. Geochim Cosmochim Acta 57:5063–5072

    Article  CAS  Google Scholar 

  • Evensen NM, Hamilton PJ, O’Nions RK (1978) Rare earth abundance in chondritic meteorites. Geochim Cosmochim Acta 42:1199–1212

    Article  CAS  Google Scholar 

  • Fahey AJ (1998) Details of the measurements of rare earth and other trace element abundances by secondary ion mass spectrometry. Int J Mass Spectrom 176:63–76

    Article  CAS  Google Scholar 

  • Foley SF (1992) Petrological characterization of the source components of potassic magmas: geochemical and experimental constraints. Lithos 28:187–204

    Article  CAS  Google Scholar 

  • Foley SF, Jenner GA (2004) Trace element partitioning in lamproitic magmas—the Gaussberg olivine leucitite. Lithos 75:19–38

    Article  CAS  Google Scholar 

  • Foley SF, Jackson SE, Fryer BJ, Greenough JD, Jenner GA (1996) Trace element partition coefficients for clinopyroxene and phlogopite in an alkaline lamprophyre from Newfoundland by LAM-ICP-MS. Geochim Cosmochim Acta 60(4):629–638

    Article  CAS  Google Scholar 

  • Forsythe LM, Nielsen RL, Fisk MR (1994) High-field-strength element partitioning between pyroxene and basaltic to dacitic magmas. Chem Geol 117:107–125

    Article  CAS  Google Scholar 

  • Gaetani GA, Grove TL (1995) Partitioning of rare earth elements between clinopyroxene and silicate melt: crystal-chemical controls. Geochim Cosmochim Acta 59:1951–1962

    Article  CAS  Google Scholar 

  • Gallahan WE, Nielsen RL (1992) The partitioning of Sc, Y, and the rare earth elements between high-Ca pyroxene and natural mafic to intermediate lavas at 1 atmosphere. Geochim Cosmochim Acta 56:2387–2404

    Article  CAS  Google Scholar 

  • Green TH (1994) Experimental studies of trace element partitioning applicable to igneous petrogenesis – Sedona 19 years later. Chem Geol 117:1–36

    Article  CAS  Google Scholar 

  • Green TH, Blundy JD, Adam J, Yaxley GM (2000) SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2–7.5 GPA and 1080–1200°C. Lithos 53:165–187

    Article  CAS  Google Scholar 

  • Hack PJ, Nielsen RL, Johnston AD (1994) Experimentally determined rare-earth element and Y partitioning behavior between clinopyroxene and basaltic liquids at pressures up to 20 kbar. Chem Geol 117:89–105

    Article  CAS  Google Scholar 

  • Harlow GE (1997) K in clinopyroxene at high pressure and temperature: an experimental study. Am Miner 82:259–269

    CAS  Google Scholar 

  • Harlow GE, Veblen BR (1991) Potassium in clinopyroxenes: inclusions from diamonds. Science 251:652–655

    Google Scholar 

  • Hart SR, Dunn T (1993) Experimental cpx/melt partitioning of 24 trace elements. Contrib Miner Petrol 113:1–8

    Google Scholar 

  • Hartmann LA, Nardi LVS, Formoso MLL, Remus MVD, Lima EF, Mexias SA (1999) Magmatism and metallogeny in the crustal evolution of Rio Grande do Sul Shield, Brazil. Pesquisas 26(2):5–63

    Google Scholar 

  • Hauri EH, Wagner TP, Grove TL (1994) Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chem Geol 117:149–166

    Article  CAS  Google Scholar 

  • Hawkesworth CJ, Kempton PD, Rogers NW, Ellam RM, van Calsteren PW (1990) Continental mantle lithosphere, and shallow level enrichment processes in the Earth’s mantle. Earth Planet Sci Lett 96:256–268

    Article  CAS  Google Scholar 

  • Ionov DA, Hofmann AW (1995) Nb-Ta-rich mantle amphiboles and micas: implications for subduction-related metasomatic trace element fractionation. Earth Planet Sci Lett 131:341–356

    Article  CAS  Google Scholar 

  • Ionov DA, Griffin WL, O’Reilly SY (1997) Volatile-bearing minerals and lithophile trace elements in the upper mantle. Chem Geol 141:153–184

    Article  CAS  Google Scholar 

  • Johnson KTM (1998) Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures. Contrib Miner Petrol 133:60–68

    Article  CAS  Google Scholar 

  • La Tourrete T, Hervig RL, Holloway JR (1995) Trace element partitioning between amphibole, phlogopite, and basanite melt. Earth Planet Sci Lett 135:13–30

    Article  Google Scholar 

  • Leat PT, Thompson RN, Morrison MA, Hendry GL, Dickin MA (1989) Silicic magmas derived by fractional crystallization from Miocene minettes, Elkhead Mountains, Colorado. Miner Mag 52:577–585

    Google Scholar 

  • Lima EF, Nardi LVS (1998) The Lavras do Sul Shoshonitic Association: implications for origin and evolution of neoproterozoic shoshonitic magmatism in Southernmost Brazil. J South Am Earth Sci 11(1):67–77

    Article  Google Scholar 

  • Luth RW (1992) Potassium in clinopyroxene at high pressure: experimental constraints (abs.) EOS 73:608

    Google Scholar 

  • McDonough WF, Sun S-s (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  CAS  Google Scholar 

  • Mitchell RH (1995) Melting experiments on a sanidine phlogopite lamproite at 4–7 GPa and their bearing on the sources of lamproitic magmas. J Petrol 36(5):145–147

    Google Scholar 

  • Murphy DT, Collerson KD, Kamber BS (2002) Lamproites from Gausberg, Antartica: possible transition zone melts of Archaean Subducted sediments. J Petrol 43:981–1001

    Article  CAS  Google Scholar 

  • Nash WP, Crecraft HR (1985) Partition coefficients for trace elements in silicic magmas. Geochim Cosmochim Acta 49:2309–2322

    Article  CAS  Google Scholar 

  • O’Reilly SY, Griffin WL, Ryan CG (1991) Residence of trace elements in metasomatized spinel lherzolite xenoliths: a proton microprobe study. Contrib Miner Petrol 109:98–113

    CAS  Google Scholar 

  • Plá Cid J, Nardi LVS, Conceição H, Bonin B (1999) The magmatic evolution of ultrapotassic syenite-granite suites, northeastern Brazil: a major and trace element approach. Intern Geol Rev 41:1005–1027

    Google Scholar 

  • Plá Cid J, Nardi LVS, Enrique P (2002) Textural relations of lamprophyric mafic enclaves and petrological implications for the genesis of potassic syenitic magmas: the example of Piquiri Syenite, southern Brazil. Pesq Geoc 29(2):21–30

    Google Scholar 

  • Plá Cid J, Nardi LVS, Stabel LZ, Conceição RV, Balzaretti NM (2003) High-pressure minerals in mafic microgranular enclaves: evidences for co-mingling between lamprophyric and syenitic magmas at mantle conditions. Contrib Miner Petrol 145:444–459

    Article  Google Scholar 

  • Plá Cid J, Nardi LVS, Enrique P, Merlet C, Vasconcellos MAZ, Boyer B (2004) Behavior of La, Ce, Nd and Sr during crystallization of minette magma equilibrated under upper mantle-pressure inferred from apatite, clinopyroxene and mica chemistry. In: Hartmann LA, Vasconcellos MAZ (eds) Dez Anos do Laboratório de Microssonda Eletrônica da Universidade Federal do Rio Grande do Sul (Ten Years of the Electron Microprobe Laboratory of the Federal University from Rio Grande do Sul). Porto Alegre, Brazil (in press)

  • Rocholl ABE, Simon K, Jochum KP, Bruhn F, Gehann R, Kramar U, Luecke W, Molzahn M, Pernicka E, Seufert M, Spettel B, Stummeier J (1997) Chemical characterisation of NIST silicate glass certified reference material SRM 610 by ICP-MS, TIMS, LIMS, SSMS, INAA, AAS and PIXE. Geostandards Newsletter, Geost Geoan 21:101–114

    Google Scholar 

  • Rogers NW, Hawkesworth CJ, Parker RJ, Marsh JS (1985) The geochemistry of potassic lavas from Vulsini, central Italy and implications for mantle enrichment processes beneath the Roman region. Contrib Miner Petrol 90:244–257

    CAS  Google Scholar 

  • Schmidt KH (1995) Die Entwicklung ungewohnlicher Isotopensignaturen im lithospharischen Erdmantel: Eine kombinierte geochemische und experimentelle Unterschung. PhD Thesis, Gottingen, p 58

    Google Scholar 

  • Schmidt KH, Botazzi P, Vanucci R, Mengel K (1999) Trace element partitioning between phlogopite, clinopyroxene and leucite lamproite melt. Earth Planet Sci Lett 168:287–299

    Article  CAS  Google Scholar 

  • Shaw CSJ, Eyzaguirre J (2000) Origin of megacrysts in the mafic alkaline lavas of the West Eifel volcanic field, Germany. Lithos 50:75–95

    Article  CAS  Google Scholar 

  • Shimizu H, Semet M, Allegre CJ (1978) Geochemical application of quantitative ion-microprobe analysis. Geochim Cosmochim Acta 42:1321–1334

    Article  CAS  Google Scholar 

  • Skulski T, Minarik W, Watson EB (1994) High-pressure experimental trace-element partitioning between clinopyroxene and basaltic melts. Chem Geol 117:127–147

    Article  CAS  Google Scholar 

  • Sobolev NV, Shatsky VS, Vavilov MA, Goryainov SV (1994) Zircons from ultra high pressure metamorphic rocks of folded regions as unique container of inclusions of diamond, coesite and coexisting minerals, Doklady. Akademii Nauk 334:488–492

    CAS  Google Scholar 

  • Stabel LZ, Nardi LVS, Plá Cid J (2001) Química mineral e evolução petrológica do Sienito Piquiri: magmatismo shoshonítico, neoproterozóico, pós-colisional no sul do Brasil. Rev Bras Geoc 31:211–222

    Google Scholar 

  • Viera N Jr, Fernandes LAD, Koester E, Sherer CS (1989) Microgranular enclaves from Piquiri Massif, RS. Acta Geol Leop 29:185–206

    Google Scholar 

  • Watson EB (1979) Zircon saturation in felsic liquids: experimental data and applications to trace element geochemistry. Contrib Miner Petrol 70:407–419

    Article  CAS  Google Scholar 

  • Wood BJ, Trigila R (2001) Experimental determination of aluminous clinopyroxene-melt partition coefficients for potassic liquids, with application to the evolution of the Roman province potassic magmas. Chem Geol 172:213–223

    Article  CAS  Google Scholar 

  • Zinner E, Crozaz, G (1986) A method for quantitative measurement of rare earth elements in the ion microprobe. Int J Mass Spectrom Ion Processes 69:17–38

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors recognize the financial support of Conselho Nacional de Pesquisa Científica (CNPq) (Proc. – 200767/00-3 and 471584/01-1), to FAPERGS and PRONEX. This is the scientific contribution number 170 from the Applied Petrological Group (GPA/UFBA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauro Valentim Stoll Nardi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plá Cid, J., Nardi, L.V.S., Gisbert, P.E. et al. SIMS analyses on trace and rare earth elements in coexisting clinopyroxene and mica from minette mafic enclaves in potassic syenites crystallized under high pressures. Contrib Mineral Petrol 148, 675–688 (2005). https://doi.org/10.1007/s00410-004-0626-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-004-0626-7

Keywords

Navigation