Skip to main content

Liquidus surfaces of ultracalcic primitive melts: formation conditions and sources

Abstract

CaO-rich, Al2O3-poor ultracalcic primitive melts occur at mid-ocean-ridges, back-arc basins, ocean islands and volcanic arcs. They are subdivided into a “nepheline-normative” alkaline-rich, silica-poor group uniquely found in arcs and in “hypersthene-normative” fairly refractory melts which occur in all of the above environments. The high CaO contents (to 19.0 wt%) and CaO/Al2O3 ratios (to 1.8) exclude an origin from fertile lherzolites at volatile-absent conditions. Experimental investigation of the liquidus of a hypersthene-normative and a nepheline-normative ultracalcic melt results in quite distinct pressure-temperature conditions of multiple saturation: whereas the hypersthene-normative liquid saturates in olivine + clinopyroxene at 1.2 GPa and 1,410°C, this occurs at 0.2 GPa and 1,220°C for the nepheline-normative ultracalcic liquid. Our results in combination with melting experiments from the literature suggest that hypersthene-normative melts result from melting of a refractory olivine + clinopyroxene ± orthopyroxene source at elevated mantle temperatures. Contrasting, nepheline-normative ultracalcic melts form from wehrlitic cumulates in the arc crust; to account for the high alkaline and low silica contents, and the relatively low temperatures, source wehrlites must have contained amphibole.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3a, b
Fig. 4a, b
Fig. 5
Fig. 6
Fig. 7
Fig. 8a, b

References

  • Albarède F, Provost A (1977) Petrologic and geochemical mass-balance equations: an algorithm for least-square fitting and general error analysis. Comput Geosci 3:309–326

    Article  Google Scholar 

  • Ancey M, Bastenaire F, Tixier R (1978) Application des méthodes statistiques en microanalyse. In: Maurice F, Meny L, Tixier R (eds) Microanalyse, microscopie électronique à balayage. Les Editions du Physicien, Orsay, pp 323–347

  • Aoki KI (1971) Petrology of mafic inclusions from Itinome-gata, Japan. Contrib Miner Petrol 30:314–331

    CAS  Google Scholar 

  • Baker MB, Stolper EM (1994) Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim Cosmochim Acta 58:2811–2827

    Article  CAS  Google Scholar 

  • Barsdell M, Berry RF (1990) Origin and evolution of primitive island arc ankaramites from Western Epi, Vanuatu. J Petrol 31:747–777

    Google Scholar 

  • Basaltic Volcanism Study Project (1981) Basaltic Volcanism on the Terrestrial Planets. Pergamon Press, Inc., New York, p 1286

  • Bell PM, Davis BTC (1969) Melting relations in the system jadeite-diopside at 30 and 40 kilobars. Am J Sci 267-A:17–32

    Google Scholar 

  • Brey G, Green DH (1977) Systematic study of liquidus phase relations in olivine melilitite + H2O + CO2 at high pressures and petrogenesis of an olivine melilitite magma. Contrib Miner Petrol 61:141–162

    CAS  Google Scholar 

  • Brey G, Huth J (1984) The enstatite-diopside solvus to 60 kbar. In: Kornprobst J (ed) Kimberlites II: the mantle and crust-mantle relationships. Elsevier, Amsterdam pp 257–264

  • De Hoog JCM, Mason PRD, van Bergen MJ (2001) Sulfur and chalcophile elements in subduction zones: constraints from a laser ablation ICP-MS study of melt inclusions from Galunggung Volcano, Indonesia. Geochim Cosmochim Acta 65:3147–3164

    Article  Google Scholar 

  • Debari S, Kay SM, Kay RW (1987) Ultramafic xenoliths from Adagdak volcano, Adak, Aleutian Islands, Alaska: deformed igneous cumulates from the MOHO of an island arc. J Geol 95:329–341

    CAS  Google Scholar 

  • Della-Pasqua FN, Varne R (1997) Primitive ankaramitic magmas in volcanic arcs: a melt-inclusion approach. Can Miner 35:291–312

    CAS  Google Scholar 

  • Della-Pasqua FN, Kamenetsky VS, Gasparon M, Crawford AJ, Varne R (1995) Al-spinels in primitive arc volcanics. Miner Petrol 53:1–26

    CAS  Google Scholar 

  • Dunworth EA, Wilson M (1998) Olivine melilitites of the SW German tertiary volcanic province: mineralogy and petrogenesis. J Petrol 39:1805–1836

    Article  CAS  Google Scholar 

  • Falloon TJ, Green DH (1988) Anhydrous partial melting of peridotite from 8 to 35 kb and the petrogenesis of MORB. J Petrol Spec Lithosphere Issue, pp 379–414

  • Falloon TJ, Green DH, Jacques AL, Hawkins JW (1999) Refractory magmas in back-arc basin settings—experimental constraints on the petrogenesis of a Lau Basin example. J Petrol 40:255–277

    Article  CAS  Google Scholar 

  • Gaetani GA, Cherniak DJ, Watson EB (2002) Diffusive reequilibration of CaO in olivine-hosted melt inclusions. In: Goldschmidt Conference Abstracts, p A254

  • Gerlach TM, Graeber EJ (1985) Volatile budget of Kilauea volcano. Nature 313:273–277

    CAS  Google Scholar 

  • Green DH, Falloon TJ, Eggins SM, Yaxley GM (2001) Primary magmas and mantle temperatures. Eur J Miner 13:437–451

    Article  CAS  Google Scholar 

  • Green DH, Schmidt MW, Hibberson, WO (2004) Island-arc ankaramites: primitive melts from fluxed refractory lherzolitic mantle. J Petrol 45:391–403

    Article  CAS  Google Scholar 

  • Gust DA, Perfit MR (1987) Phase relations of a high-Mg basalt from the Aleutian Island Arc: implications for primary island arc basalts and high-Al basalts. Contrib Miner Petrol 97:7–18

    CAS  Google Scholar 

  • Himmelberg GR, Loney RA (1995) Characteristics and petrogenesis of Alaskan-type ultramafic-mafic intrusions, southeastern Alaska. USGS Prof Paper 1564

  • Hirose K (1997) Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in the alkali-basalt magma generation. Geophys Res Lett 24:2837–2840

    Article  CAS  Google Scholar 

  • Hirose K, Kawamoto T (1995) Hydrous partial melting of lherzolite at 1 GPa: the effect of H2O on the genesis of basaltic magmas. Earth Planet Sci Lett 133:463–473

    Article  CAS  Google Scholar 

  • Hirose K, Kushiro I (1993) Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotites using aggregates of diamonds. Earth Planet Sci Lett 114:477–489

    Google Scholar 

  • Hirschmann MM, Stolper EM (1996) A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contrib Miner Petrol 124:185–208

    Article  CAS  Google Scholar 

  • Hirschmann MM, Baker MB, Stolper EM (1998) The effect of alkalis on the silica content of mantle-derived melts. Geochim Cosmochim Acta 62:883–902

    Article  CAS  Google Scholar 

  • Hirschmann MM, Ghiorso MS, Stolper EM (1999) Calculation of peridotite partial melting from thermodynamic models of minerals and melts. II. Isobaric variations in melts near the solidus and owing to variable source composition. J Petrol 40:297–313

    Article  CAS  Google Scholar 

  • Holloway JR (1972) The system pargasite-H2O–CO2: a model for melting of a hydrous mineral with a mixed-volatile fluid—I. Experimental results to 8 kbar. Geochim Cosmochim Acta 37:351–666

    Google Scholar 

  • Holloway JR, Pan V, Gudmundsson G (1992) High-pressure fluid-absent melting experiments in the presence of graphite: oxygen fugacity, ferric/ferrous ratio and dissolved CO2. Eur J Miner 4:105–114

    CAS  Google Scholar 

  • Jambon A (1994) Earth degassing and large-scale geochemical cycling of volatile elements. In: Carroll MR, Holloway JR (eds) Volatiles in magmas, Reviews in Mineralogy 30. Mineralogical Society of America, pp 479–517

  • Jaques AL, Green DH (1980) Anhydrous melting of peridotite at 0–15 kb pressure and the genesis of tholeiitic basalts. Contrib Miner Petrol 73:287–310

    CAS  Google Scholar 

  • Kamenetsky VS, Crawford AJ, Eggins S, Mühe R (1997) Phenocryst and melt inclusion chemistry of near-axis seamounts, Valu Fa Ridge, Lau Basin: insight into mantle wedge melting and the addition of subduction components. Earth Planet Sci Lett 151:205–223

    Article  Google Scholar 

  • Kamenetsky VS, Eggins SM, Crawford AJ, Green DH, Gasparon M, Falloon TJ (1998) Calcic melt inclusions in primitive olivine at 43°N MAR: evidence for melt-rock reaction/melting involving clinopyroxene-rich lithologies during MORB generation. Earth Planet Sci Lett 160:115–132

    Google Scholar 

  • Kay SM, Kay RW (1985) Role of crystal cumulates and the oceanic crust in the formation of the lower crust of the Aleutian arc. Geology 13:461–464

    CAS  Google Scholar 

  • Kogiso T, Hirschmann MM (2001) Experimental study of clinopyroxenite partial melting and the origin of ultra-calcic melt inclusions. Contrib Miner Petrol 142:347–360

    CAS  Google Scholar 

  • Kushiro I (1969) The system forsterite-diopside-silica with and without water at high pressures. Am J Sci 267A:269–294

    Google Scholar 

  • Kushiro I (1990) Partial melting of mantle wedge and evolution of island arc crust. J Geophys Res 95:15929–15939

    Google Scholar 

  • Kushiro I (1996) Partial melting of a fertile mantle peridotite at high pressures: an experimental study using aggregates of diamond. In: Earth processes: reading the isotopic code. Geophys Monogr 95:109–102

    Google Scholar 

  • Laporte D, Toplis M, Seyler M, Devidal J-L (2004) A new experimental technique for extracting liquids from peridotite at very low degrees of melting: application to partial melting of depleted peridotite. Contrib Miner Petrol 146:463–484

    Article  CAS  Google Scholar 

  • Libourel G (1999) Systematics of calcium partitioning between olivine and silicate melt: implications for melt structure and calcium content of magmatic olivine. Contrib Miner Petrol 136:63–80

    Article  CAS  Google Scholar 

  • Maclenan J, McKenzie D, Grönvold K (2001) Plume-driven upwelling under central Iceland. Earth Planet Sci Lett 194:67–82

    Article  Google Scholar 

  • McKenzie D, Bickle MJ (1988) The volume and composition of melt generated by extension of the lithosphere. J Petrol 29:625–679

    CAS  Google Scholar 

  • O’Neill (1987) Quartz-fayalite-iron and quartz-fayalite-magnetite equilibria and the free energy of formation of fayalite (Fe2SiO4) and magnetite (Fe3O4). Am Miner 72:67–75

    CAS  Google Scholar 

  • O’Neill HSC, Pownceby MI (1993) Thermodynamic data from redox reactions at high temperatures. I. An experimental and theoretical assessment of the electrochemical method using stabilized zirconia electrolytes, with revised values for the Fe–“FeO”, Co–CoO, Ni–NiO and Cu–Cu2O oxygen buffers, and new data for the W-WO2 buffer. Contrib Miner Petrol 114:296–314

    CAS  Google Scholar 

  • Pertermann M, Hirschmann MM (2003) Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. J Geophys Res 108:2125. DOI 10.1029/2000JB000118

    Article  Google Scholar 

  • Pichavant M, Mysen BO, Macdonald R (2002) Source and H2O content of high-MgO magmas in island arc settings: an experimental study of a primitive calc-alkaline basalt from St. Vincent, Lesser Antilles arc. Geochim Cosmochim Acta 66:2193–2209

    Article  CAS  Google Scholar 

  • Pickering-Witter J, Johnston AD (2000) The effects of variable bulk composition on the melting systematic of fertile peridotitic assemblages. Contrib Miner Petrol 140:190–211

    Article  CAS  Google Scholar 

  • Richard M (1986) Géologie et Pétrologie d’un jalon de l’arc Taïwan-Luzon : l’île de Batan (Philippines). PhD Thesis, Université de Bretagne Occidentale

  • Schairer JF, Yoder HS (1969) Critical planes and flow and flow sheet for a portion of the system CaO–MgO–Al2O3–SiO2 having petrological implications. Carnegie Inst. Washington. Ann Rept Dir Geophys Lab, pp 202–214

  • Schiano P, Eiler JM, Hutcheon ID, Stolper EM (2000) Primitive CaO-rich, silica-undersaturated melts in island arcs: evidence for the involvement of clinopyroxene-rich lithologies in the petrogenesis of arc magmas. Geochem Geophys Geosys 1:1999GC000032

    Google Scholar 

  • Schmidt MW, Green DH, Hibberson WO (2004) Ultracalcic magmas generated from Ca-depleted mantle: an experimental study on the origin of ankaramites. J Petrol 45:531–554

    Article  CAS  Google Scholar 

  • Schwab BE, Johnston AD (2001) Melting systematics of modally variable, compositionally intermediate peridotites and the effects of mineral fertility. J Petrol 42:1789–1811

    Article  CAS  Google Scholar 

  • Sigurdsson IA, Steinthorsson S, Grönvold K (2000) Calcium-rich melt inclusions in Cr-spinels from Borgarhraun, northern Iceland. Earth Planet Sci Lett 183:15–26

    Google Scholar 

  • Slater L, McKenzie D, Grönvold K, Shimizu N (2001) Melt migration and movement beneath Theistareykir, NE Iceland. J Petrol 42:321–354

    Article  CAS  Google Scholar 

  • Sobolev AV, Chaussidon M (1996) H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: implications for H2O storage and recycling in the mantle. Earth Planet Sci Lett 137:45–55

    Google Scholar 

  • Soulard H, Provost A, Boivin P (1992) CaO–MgO–Al2O3–SiO2–Na2O (CMASN) at 1 bar from low to high Na2O contents; topology of an analogue for alkaline basic rocks. Chem Geol 96:459–477

    Article  CAS  Google Scholar 

  • Thibault Y, Holloway JR (1994) Solubility of CO2 in a Ca-rich leucitite: effects of pressure, temperature, and oxygen fugacity. Contrib Miner Petrol 116:216–224

    CAS  Google Scholar 

  • Trønnes RG (1990) Basaltic melt evolution of the Hengill volcanic system, SW Iceland, and evidence for clinopyroxene assimilation in primitive tholeiitic magmas. J Geophys Res 95:15893–15910

    Google Scholar 

  • Turner S, Foden J, George R, Evans P, Varne R, Elburg M, Jenner G (2003) Rates and processes of potassic magma evolution beneath Sangeang Api volcano, East Sunda arc, Indonesia. J Petrol 44:491–515

    Article  CAS  Google Scholar 

  • Ulmer P (1989) The dependence of the Fe2+-Mg cation-partitioning between olivine and basaltic liquid on pressure, temperature and composition; an experimental study to 30 kbars. Contrib Miner Petrol 101:261–273

    CAS  Google Scholar 

  • Vielzeuf D, Clemens J (1992) The fluid-absent melting of phlogopite + quartz; experiments and models. Am Miner 77:1206–1222

    CAS  Google Scholar 

  • Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39:29–60

    Article  CAS  Google Scholar 

  • Wasylenki LE, Baker MB, Kent AJR, Stolper EM (2003) Near-solidus melting of the shallow upper mantle: partial melting experiments on depleted peridotite. J Petrol 44:1163–1191

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study has benefited from discussions with D. Laporte, E.M. Stolper and P. Boivin. We thank A. Provost for his mass-balance program and M. Veschambre for technical assistance with the electron probe microanalysis. The manuscript has been improved by constructive reviews by D.H. Green and M.M. Hirschmann. Financial support was provided by the European Community’s Human Potential Programme under contract HPRN-CT-2002–00211 (Euromelt) and by INSU-CNRS (I.T. programme).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Médard.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Médard, E., Schmidt, M.W. & Schiano, P. Liquidus surfaces of ultracalcic primitive melts: formation conditions and sources. Contrib Mineral Petrol 148, 201–215 (2004). https://doi.org/10.1007/s00410-004-0591-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-004-0591-1

Keywords

  • Olivine
  • CaNe
  • Nepheline
  • Oxygen Fugacity
  • Multiple Saturation