Skip to main content
Log in

Cohenite, native iron and troilite inclusions in garnets from polycrystalline diamond aggregates

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Syngenetic garnet of eclogitic/pyroxenitic composition included in a polycrystalline diamond aggregate from the Venetia kimberlite, Limpopo Belt, South Africa shows multiple inclusions of spherules consisting of 61±5 vol% Fe3C (cohenite), 30±2 vol% Fe-Ni and 9±3 vol% FeS (troilite). Troilite forms shells around the native iron-cohenite assemblage, implying that both compositions were immiscible melts and were trapped rapidly by the silicate. It is proposed that this polycrystalline diamond-silicate-metallic spherule assemblage formed in very local pressure and fO2 conditions in cracks at the base of the subcratonic lithosphere from a C-H-O fluid that reacted with surrounding silicate at about 1,300–1,400 °C. In a mantle fluid consisting of CH4>H2O>H2 near fO2=IW, the H2 activity increases rapidly when carbon from the fluid is consumed by diamond precipitation, driving the oxygen fugacity of the system to lower values along the diamond saturation curve. Water from the fluid induces melting of surrounding silicate material, and hydrogen reduces metals in the silicate melt, reflected by an unusually low Ni content of the garnet. The carbon isotopic composition of δ13C=−13.69‰ (PDB) and the lack of nitrogen as an impurity is consistent with formation of the diamond from non-biogenic methane, whereas δ18O=7.4‰ (SMOW) of the garnet implies derivation of the silicate from subduction-related material. Hence, very localized and transient reducing conditions within the subcratonic lithosphere can be created by this process and do not necessarily call for involvement of fluids derived from subducted material of biogenic origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  • Allsopp HL, Smith CB, Seggie AG, Skinner EMW, Colgan EA (1995) The emplacement age and geochemical character of the Venetia kimberlite bodies, Limpopo Belt, Northern Transvaal. S Afr J Geol 98(3):239–244

    CAS  Google Scholar 

  • Aulbach S, Stachel T, Viljoen KS, Brey GP, Harris JW (2002) Eclogitic and websteritic diamond sources beneath the Limpopo Belt—is slab-melting the link? Contrib Mineral Petrol 143:56–70

    CAS  Google Scholar 

  • Ballhaus C (1993) Redox states of lithospheric and asthenospheric upper mantle. Contrib Mineral Petrol 114:331–348

    CAS  Google Scholar 

  • Bulanova GP (1995) The formation of diamond. J Geochem Explor 53:1–23

    Article  CAS  Google Scholar 

  • Bulanova GP, Zayakina NV (1990) A graphite-cohenite-iron mineral association in the core of a diamond form the twenty-third Soviet communist party congress pipe. Doklady Akad. Nauk. SSSR, Geoscience section 317:706–709

    Google Scholar 

  • Cartigny P, Harris JW, Javoy M (1998) Eclogitic diamond formation at Jwaneng: no room for a recycled component. Science 280:1421–1424

    Article  CAS  PubMed  Google Scholar 

  • Collinson DW (1998) Magnetic properties of polycrystalline diamonds. Earth Planet Sci Lett 161:179–188

    Article  CAS  Google Scholar 

  • Deines P (1980) The carbon isotopic composition of diamonds: relationship to diamond shape, color, occurrence and vapor composition. Geochim Cosmochim Acta 44:943–961

    CAS  Google Scholar 

  • Deines P (2002) The carbon isotope geochemistry of mantle xenoliths. Earth Sci Rev 58:247–278

    Article  CAS  Google Scholar 

  • Deines P, Viljoen F, Harris JW (2001) Implications of the carbon isotope and mineral inclusion record for the formation of diamonds in the mantle underlying a mobile belt: Venetia, South Africa. Geochim Cosmochim Acta 65:813–838

    CAS  Google Scholar 

  • Dobosi G, Kurat G (2002) Trace element abundances in garnets and clinopyroxenes from diamondites—a signature of carbonatitic fluid. Mineral Petrol 76:21–38

    Article  CAS  Google Scholar 

  • Eggler DH (1983) Upper mantle oxidation state: evidence from olivine-orthopyroxene-ilmenite assemblages. Geophys Res Lett 10:365–368

    CAS  Google Scholar 

  • Friel JJ, Ulmer GC (1974) Oxygen fugacity geothermometry of the oka carbonatite. Am Mineral 59:314–318

    CAS  Google Scholar 

  • Goodrich CA, Berkley JL (1986) Primary magmatic carbon in ureilites; evidence from cohenite-bearing metallic spherules. Geochim Cosmochim Acta 50(5):681–691

    Article  CAS  Google Scholar 

  • Goodrich CA, Bird JM (1985) Formation of iron-carbon alloys in basaltic magma at Uivfaq, Disko Island; the role of carbon in mafic magmas. J Geol 93(4):475–492

    CAS  Google Scholar 

  • Green D, Falloon T (1998) Pyrolite: a Ringwood concept and its current expression. In: Jackson I (ed) The Earth’s mantle. Cambridge University Press, New York, pp 311–378

  • Gurney JJ, Boyd FR (1982) Mineral intergrowths with polycrystalline diamonds from the Orapa Mine, Botswana. Carnegie Inst Year Book, pp 267–273

  • Haggerty SE, Tompkins LA (1986) Redox state of the Earth’s upper mantle form kimberlitic ilmenites. Nature 303:295–300

    Google Scholar 

  • Henke BL, Lee P, Tanaka TJ, Shimabukuro RL, Fujikaawa BK (1982) Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection. At Data Nucl Data Tables 27:1–144

    CAS  Google Scholar 

  • Irmer W (1920) Der Basalt des Bühls bei Kassel und seine Einschlüsse von Magnetit, Magnetkies und gediegen Eisen. Abhdl Senckenb Naturf Ges 137:91–108

    Google Scholar 

  • Jacob DE, Foley SF (1999) Evidence for Archean ocean crust with low high field strength element signature from diamondiferous eclogite xenoliths. Lithos 48:317–336

    CAS  Google Scholar 

  • Jacob DE, Schmickler B, Schulze DJ (2003) Trace element geochemistry of coesite-bearing eclogites from the Roberts Victor kimberlite, Kaapvaal craton. Lithos (in press)

  • Jacob DE, Viljoen KS, Grassineau N, Jagoutz E (2000) Remobilization in the cratonic lithosphere recorded in polycrystalline diamond. Science 289:1182–1185

    Google Scholar 

  • Kamenskiy IL, Lobkov VA, Prasolov EM, Beskrovny NS, Kudryavtseva EI, Anufriev GS, Pavlov VB (1976) The components of the upper mantle of the Earth in gases of Kamchatka (according to He, Ne, Ar and C isotopy). Geochem Int 13:35–48

    Google Scholar 

  • Kirkley MB, Gurney JJ, Otter ML, Hill SJ, Daniels LR (1991) The application of C isotope measurements to the identification of the sources of C in diamonds: a review. Appl Geochem 6:477–494

    CAS  Google Scholar 

  • Kirkley MB, Gurney JJ, Rickard RS (1995) Jwaneng Framesites: Carbon isotopes and intergrowth compositions. In: Meyer HOA, Leonardos OH (eds) Diamonds: characterization, genesis and exploration, Vol. 2. CPRM Spec Publ 1/95, pp 127–135

  • Kurat G, Dobosi G (2000) Garnet and diopside-bearing diamondites (framesites). Mineral Petrol 69:143–160

    Article  CAS  Google Scholar 

  • Leung IS, Guo W, Friedman I, Gleason J (1990) Natural occurrence of silicon carbide in diamondiferous kimberlite from Fuxian. Nature 346:352–354

    Article  CAS  Google Scholar 

  • Lovering JF (1964) Electron microprobe analysis of terrestrial and meteoritic cohenite. Geochim Cosmochim Acta 28(11):1745–1755

    Article  CAS  Google Scholar 

  • Mathez EA, Fogel RA, Hutcheon ID, Marshintsev VK (1995) Carbon isotopic composition and origin of SiC from kimberlites of Yakutia. Geochim Cosmochim Acta 59:781–791

    Article  CAS  Google Scholar 

  • Mattey D, Macpherson C (1993) High-precision oxygen isotope microanalysis of ferromagnesian minerals by laser-fluorination. Chem Geol 105:305–318

    CAS  Google Scholar 

  • McCandless TE, Kirkley MB, Robinson DN, Gurney JJ, Griffin WL, Cousens DR, Boyd FR (1989) Some initial observations on polycrystalline diamonds mainly from Orapa: Abstract. Ext. Abstr. 28th Int Geological Congress, pp 47–51

    Google Scholar 

  • Moore RO, Gurney JJ (1986) Mineral inclusions in diamond from the Monastry kimberlite, South Africa. In: Ross J, Jaques AL, Ferguson J, Green DH, O’Reilly SY, Danchin RV, Janse AJA (eds) Kimberlites and related rocks, Vol. 14. Geol Soc Austr Spec Publ, pp 1029–1041

  • Navon O (1999) Diamond formation in the Earth’s mantle. In: Gurney J, Gurney JL, Pascoe MD, Richardson SH (eds) Proc 7th Int Kimberlite Conf, Vol 2, pp 584–604

  • Newbury DE, Myklebust RL (1995) NIST Micro MC: a user’s guide to the NIST Microanalysis Monte Carlo electron trajectory simulation program. Microbeam Anal 4:165–175

    CAS  Google Scholar 

  • Nisbet EG, Mattey DP, Lowry D (1994) Can diamonds be dead bacteria? Nature 367, p 694

  • O’Neill HSC, Wall VJ (1987) The olivine-orthopyroxene-spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth’s upper mantle. J Petrol 28:1169–1191

    CAS  Google Scholar 

  • Olafsson M, Eggler D (1983) Phase relations of amphibole, amphibole-carbonate, and phlogopite-carbonate peridotite: petrologic constraints on the asthenosphere. Earth Planet Sci Lett 64:305–315

    CAS  Google Scholar 

  • Orlov JL (1977) The mineralogy of diamond. Wiley, New York, 235 pp

  • Petch NJ (1944) The interpretation of the crystal structure of cementite. J Iron Steel Indust 149:143–150

    Google Scholar 

  • Robey RA, Hemingway BS (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. US Geol Surv Bull 2131. US Department of the Interior, Washington, DC, 461 pp

  • Schwab RG, Küstner D (1981) The equilibrium fugacities of important oxygen buffers in technology and petrology. Neues Jahrb Mineral Abh 140:111–142

    CAS  Google Scholar 

  • Sharp WE (1966) Pyrrhotite: a common inclusion in South African diamonds. Nature 211:402–403

    CAS  Google Scholar 

  • Sobolev NV, Pokhilenko NP, Lavrent’ev YG, Usova LV (1975) Distinctive features on the composition of chrome spinels in the diamonds and kimberlites of Yakutia. Soviet Geol Geophys 16(11):7–24

    Google Scholar 

  • Sobolev NV, Galimov EM, Ivanovskaya I, Yefimova ES (1979) The carbon isotope compositions of diamonds containing crystalline inclusions (in Russian). Dokl Akad Nauk SSSR 249:1217–1220

    CAS  Google Scholar 

  • Sobolev NV, Yefimova ES, Pospelova LN (1989) Native iron in Yakutian diamonds and its paragenesis. Soviet Geol Geophys 22:18–21

    Google Scholar 

  • Stachel T, Harris JW, Brey GP (1998) Rare and unusual mineral inclusions in diamonds from Mwadui, Tanzania. Contrib Mineral Petrol 132:34–47

    CAS  Google Scholar 

  • Strong HM, Tuft RE (1973) The Fe-C system at ~56 kb. General Electric. Technical Information Series, Report no 73CRD244:1–3

  • Taylor WR (1990) A reappraisal of the nature of fluids included by diamond—a window to deep-seated mantle fluids and redox conditions. In: Herbert HK, Ho SE (eds) Stable isotopes and fluid processes in mineralization. University of Western Australia, pp 333–349

  • Ulff-Møller F (1985) Solidification history of the Kitdilt Lens; immiscible metal and sulphide liquids from a basaltic dyke on Disko, central West Greenland. J Petrol 26(1):64–91

    Google Scholar 

  • Vogel R, Ritzau G (1931) Über das ternäre System Eisen-Schwefel-Kohlenstoff. Archiv für das Eisenhüttenwesen 4:549–556

  • Welhan JA, Craig H (1983) Methane, hydrogen and helium in hydrothermal fluids at 21°N on the East Pacific Rise. In: Rona PA, Bostrom K, Laubier L (eds) Hydrothermal processes at seafloor spreading centers 12. Plenum Press, New York, pp 391–410

  • Wood BJ (1993) Carbon in the core. Earth Planet Sci Lett 117:593–607

    Article  CAS  Google Scholar 

  • Yasuda A, Fujii T, Kurita K (1994) Melting phase-relations of an anhydrous midocean ridge basalt from 3 to 20 GPa—Implications for the behavior of subducted oceanic crust in the mantle. J Geophys Res 99(B5):9401–9414

    Google Scholar 

Download references

Acknowledgments

We thank Pierre Cartigny (IPGP Paris) and Nathalie Grassineau (University of London) for providing first class stable isotope analyses. Cyrena Goodrich provided a Disko cohenite standard and gave valuable insights into the metallurgical literature and discussions with Astrid Holzheid and Sharon Webb helped to shape thought regarding oxygen fugacity estimations. Earlier versions of this article profited from informal and formal reviews by Dave Green, Nick Sobolev, Alan Woodland, Ben Harte and Jeff Harris. D.J. gratefully acknowledges financial support from the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Jacob.

Additional information

Editorial responsibility: J. Hoefs

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacob, D.E., Kronz, A. & Viljoen, K.S. Cohenite, native iron and troilite inclusions in garnets from polycrystalline diamond aggregates. Contrib Mineral Petrol 146, 566–576 (2004). https://doi.org/10.1007/s00410-003-0518-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-003-0518-2

Keywords

Navigation