Advertisement

Contributions to Mineralogy and Petrology

, Volume 146, Issue 4, pp 485–492 | Cite as

Characterization of water in synthetic rhyolitic glasses and natural melt inclusions by Raman spectroscopy

  • Aliouka Chabiron
  • Jacques PirononEmail author
  • Dominique Massare
Original Paper

Abstract

Raman spectroscopy was used to analyze quantitatively water in silicate glasses and melt inclusions and to monitor H2O–OH speciation. Calibration is based on synthetic glasses with various water contents (0.02–7.67% H2O); water determination and OH–H2O differentiation on the area of the Si–O broad band at 468 cm–1 and the asymmetric O–H band at 3,550 cm–1. Each Raman spectrum has been decomposed into four Gaussian + Lorentzian components centered at 3,330, 3,458, 3,560, and 3,626 cm–1 using the Levenberg–Marquardt algorithm. These components are interpreted to be two different types of H2O molecule sites. The influence of the temperature on the loss of water is more important for molecular water than for the hydroxyl groups. The H2O–OH partition confirms the typical evolution of water speciation in rhyolitic glasses as a function of the bulk water content. Method limitations have been studied for the application to natural melt inclusions.

Keywords

Raman Spectroscopy Molecular Water Band Area Water Determination Raman Microspectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors wish to thank R. Clocchiatti (CEN/Saclay, France) for helpful discussions and for providing samples from Mont Dore, San Pietro, and Guadeloupe; C. Peiffert (CREGU, France) and F. Gibert (Université de Clermont-Ferrand, France), respectively, for the preparation and for heating the standard glasses.

References

  1. Behrens H, Romano C, Nowak M, Holtz F, Dingwell DB (1996) Near-infrared spectroscopic determination of water species in glasses of the system MalSi3O8 (M=Li, Na, K): an interlaboratory study. Chem Geol 128:41–63CrossRefGoogle Scholar
  2. Brawer SA, White WB (1975) Raman spectroscopic investigation of silicate glasses. I. The binary alkali silicates. J Chem Phys 63:2421–2432CrossRefGoogle Scholar
  3. Chabiron A, Peiffert C, Pironon J, Cuney M (1999) Determination of water content in melt inclusions by Raman spectrometry. In: Ristedt H (ed) Lüders V, Thomas R, Schmidt-Mumm A (eds) ECROFI XV (European Current Research on Fluid Inclusions), Abstr Prog., Terra Nostra — Schr Alfred-Wegner-Stiftung 99/6, pp 68–69Google Scholar
  4. Clocchiatti R (1975) Les inclusions vitreuses des cristaux de quartz. Etude optique, thermo-optique et chimique. Applications géologiques. Mem Soc Géol FranceGoogle Scholar
  5. Delaney JR, Karsten JL (1981) Ion microprobe studies of water in silicate melts: concentration-dependent water diffusion in obsidian. Earth Planet Sci Lett 52:192–202CrossRefGoogle Scholar
  6. Deloule E, Paillat O, Pichavant M, Scaillet B (1995) Ion microprobe determination of water in silicate glasses: methods and applications. Chem Geol 125:19–28CrossRefGoogle Scholar
  7. Devine JD, Gardner JE, Brack HP, Layne GD, Rutherford M (1995) comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses. Am Mineral 80:319–328Google Scholar
  8. Galeener FL (1985) Raman and ESR studies of the thermal history of amorphous SiO2. J Non-Cryst Solids 71:373–386Google Scholar
  9. Ihinger PD, Hervig RL, McMillan PF (1994) Analytical methods for volatiles in glasses. In: Carroll MR, Holloway JR (eds) Volatiles in magmas. Rev Mineral 30:67–121Google Scholar
  10. Ihinger PD, Zhang Y, Stolper EM (1999) The speciation of dissolved water in rhyolitic melt. Geochim Cosmochim Acta 63:3567–3578Google Scholar
  11. Larhidi N (1981) Contribution à l’étude des laves hyperalcalines de l’île de S.Pietro (Sardaigne). Thèse 3ème cycle, Paris-OrsayGoogle Scholar
  12. Matson DW, Sharma SK, Philpotts JA (1983) The structure of high-silica alkali-silicate glasses — a Raman spectroscopic investigation. J Non-Cryst Solids 58:323–352Google Scholar
  13. McMillan P (1984) Structural studies of silicate glasses and melts — applications and limitations of Raman spectroscopy. Am Mineral 69:622–644Google Scholar
  14. McMillan PF, Remmele RL (1986) Hydroxyl sites in SiO2 glass: a note on infrared and Raman spectra. Am Mineral 71:772–778Google Scholar
  15. Morgan GB VI, London D (1996) Optimizing the electron microprobe analysis of hydrous alkali aluminosilicate glasses. Am Mineral 81:1176–1185Google Scholar
  16. Mysen BO, Virgo D, Scarfe CM (1980) Relations between the anionic structure and viscosity of silicate melts: a Raman spectroscopic study. Am Mineral 65:690–710Google Scholar
  17. Mysen BO, Virgo D, Seifert FA (1982) The structure of silicate melts: implications for chemical and physical properties of natural magma. Rev Geophys Space Phys 20:353–383Google Scholar
  18. Mysen BO, Holtz F, Pichavant M, Beny J-M, Montel J-M (1997) Solution mechanisms of phosphorous in quenched hydrous and anhydrous granitic glass as a function of peraluminosity. Geochim Cosmochim Acta 61:3913–3926CrossRefGoogle Scholar
  19. Newman S, Stolper EM, Epstein S (1986) Measurement of water in rhyolitic glasses: calibration of an infrared spectroscopic technique. Am Mineral 71:1527–1541Google Scholar
  20. Salova TP, Epel’baum MB, Stolyarova TA, Zavel’sky VO (1996) Relationship between molecular water and hydroxyl groups in rhyolitic and quartz glasses. Chem Erde 56:383–386Google Scholar
  21. Schmidt BC, Berhrens H, Riemer T, Kappes R, Dupree R (2001) Quantitative determination of water speciation in aluminosilicate glasses: a comparative NMR and IR spectroscopic study. Chem Geol 174:195–208CrossRefGoogle Scholar
  22. Silver LA, Ihinger PD, Stolper E (1990) The influence of bulk composition on the speciation of water in silicate glasses. Contrib Mineral Petrol 104:142–162Google Scholar
  23. Stolen RH, Walrafen GE (1976) Water and its relation to broken bond defects in fused silica. J Chem Phys 64:2623–2631CrossRefGoogle Scholar
  24. Stolper E (1982a) Water in silicate glasses: an infrared spectroscopic study. Contrib Mineral Petrol 81:1–17Google Scholar
  25. Stolper E (1982b) The speciation of water in silicate melts. Geochim Cosmochim Acta 46:2609–2620Google Scholar
  26. Thomas R (2000) Determination of water contents of granite melt inclusions by confocal laser Raman microprobe spectroscopy. Am Mineral 85:868–872Google Scholar
  27. Withers AC, Behrens H (1999) Temperature induced changes in the NIR spectra of hydrous albitic and rhyolitic glasses between 100 and 300 K. Phys Chem Mineral 27:119–132CrossRefGoogle Scholar
  28. Zhang Y, Belcher R, Ihinger PD, Wang L, Xu Z, Newmann S (1997) New calibration of infrared measurement of dissolved water in rhyolitic glasses. Geochim Cosmochim Acta 5:3089–3100Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Aliouka Chabiron
    • 1
  • Jacques Pironon
    • 1
    Email author
  • Dominique Massare
    • 2
  1. 1.CREGU-UMR G2R 7566, BP 239France
  2. 2.Laboratoire Pierre SüeCEN/SaclayFrance

Personalised recommendations