Skip to main content
Log in

The youngest basic oceanic magmatism in the Alps (Late Cretaceous; Chiavenna unit, Central Alps): geochronological constraints and geodynamic significance

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Cathodoluminescence-controlled radiometric dating (U–Pb SHRIMP) was carried out on zircon domains from metabasic rocks of the Chiavenna unit, a major mafic/ultramafic-bearing unit in the Central Alps. Co-magmatic zircon domains from amphibolites near Chiavenna and Prata areas yielded weighted mean 206Pb/238U ages at 93.0±2.0 and 93.9±1.8 Ma, respectively, interpreted as the age of crystallization of the magmatic protoliths. These ages fit well with the time of late spreading in the Valais Ocean, as suggested by previous paleogeographic reconstructions. Inherited zircon grains and/or core domains (Permo-Triassic, Carboniferous, Proterozoic) are abundant, indicating proximity of the Chiavenna unit to thinned continental crust. This is in line with the origin of this unit from subcontinental mantle sources, as suggested previously on petrological and structural grounds. Metamorphic zircon domains from one amphibolite near Chiavenna yielded a weighted mean 206Pb/238U age at 37.1±0.9 Ma, identical to the 38.5±0.9 Ma SHRIMP age of an amphibolitized eclogite of the Antrona ophiolites (Valais domain, Western Alps). Precise metamorphic ages were difficult to obtain from the composite (poly)metamorphic rim domains of the Prata amphibolite. This is attributed to the location of the Prata area close to the granulite-facies Gruf unit (metamorphosed at ca. 33 Ma) and to the 24–25 Ma old Novate granite, where metamorphic/fluid events probably caused multiple resetting to various degrees. The ca. 93 Ma old magmatism, identified for the first time in the Chiavenna unit, is the youngest basic oceanic magmatism reported in the Alps. The 37.1±0.9 Ma old metamorphism in the Chiavenna unit, attributed to the Valais domain, confirms the model suggesting stepwise younging of metamorphic ages from the south (Adriatic plate) to the north (European plate). It is older than metamorphism in the European margin (ca. 35–31 Ma) lying to the north of the Valais domain and younger than that in the Piemont–Ligurian Ocean (ca. 44–45 Ma) lying to the south of the Valais domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5A–C.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  • Amato JM, Johnson CM, Baumgartner LP, Beard BL (1999) Rapid exhumation of the Zermatt-Saas ophiolite deduced from high-precision Sm–Nd and Rb–Sr geochronology. Earth Planet Sci Lett 171:425–438.

    CAS  Google Scholar 

  • Bill M, Bussy F, Cosca M, Masson H, Hunziker JC (1997) High-precision U–Pb and 40Ar/39Ar dating of the Alpine ophiolite (Gets nappe, French Alps). Eclogae Geol Helv 90:43–54

    CAS  Google Scholar 

  • Bowtell SA, Cliff RA, Barnicoat AC (1994) Sm–Nd isotopic evidence on the age of eclogitisation in the Zermatt-Saas ophiolite. J Metamorph Geol 12:187–196

    CAS  Google Scholar 

  • Cliff RA, Barnicoat AC, Inger S (1998) Early Tertiary eclogite-facies metamorphism in the Monviso ophiolite. J Metamorph Geol 16:447–455

    CAS  Google Scholar 

  • Compston W, Williams IS, Kirschvink JL, Zichao Z, Guogan M (1992) Zircon U–Pb ages for the Early Cambrian time-scale. J Geol Soc Lond 149:171–184

    CAS  Google Scholar 

  • Costa S, Caby R (2001) Evolution of the Ligurian Tethys in the Western Alps: Sm/Nd and U/Pb geochronology and rare-earth element geochemistry of the Montgenèvre ophiolite (France). Chem Geol 175:449–466

    Article  CAS  Google Scholar 

  • Cumming GL, Richards GR (1975) Ore lead isotope ratios in a continuously changing Earth. Earth Planet Sci Lett 28:155–171

    CAS  Google Scholar 

  • De Wever P, Baumgartner PO (1995) Radiolarians from the base of the Supra-ophiolitic Schistes Lustrés Formation in the Alps (Saint-Véran, France and Traversiera Massif, Italy). In: Baumgartner PO, O'Dogerthy L, Gorican S, Urquhart E, Pillevuit A, De Wever P (eds) Middle Jurassic to Lower Cretaceous Radiolaria of Tethys: occurrences, systematics, biochronology. Mém Géol (Lausanne) 23:725–730

  • Duchêne S, Blichert-Toft J, Luais B, Télouk P, Lardeuaux JM, Albarède F (1997) The Lu–Hf dating of garnets and the ages of the Alpine high-pressure metamorphism. Nature 387:586–589

    Article  Google Scholar 

  • Dürr SB, Ring U, Frisch W (1993) Geochemistry and geodynamic significance of Northern Penninic ophiolites from the Central Alps. Schweiz Mineral Petrogr Mitt 73:407–419

    Google Scholar 

  • Escher A, Hunziker J-C, Marthaler M, Mason H, Sartori M, Stech (1997) A geologic framework and structural evolution of the western Swiss–Italian Alps, in: Pfiffner OA, Lehner P, Heitzmann PZ, Mueler S, Steck A (eds) Deep structure of the Swiss Alps: results of NRP 20, Birkhäuser, Basel, pp 205–221

  • Florineth D, Froitzheim N (1994) Transition from continental to oceanic basement in the Tasna nappe (Engadine window, Graubünden, Switzerland): evidence for Early Cretaceous opening of the Valais Ocean. Schweiz Mineral Petrogr Mitt 74:134–137

    Google Scholar 

  • Frey M, Ferreiro-Mählmann R (1999) Alpine metamorphism of the Central Alps. Schweiz Mineral Petrogr Mitt 79:135–154

    Google Scholar 

  • Frisch W (1979) Tectonic progradation and plate tectonic evolution of the Alps. Tectonophysics 60:121–139

    Google Scholar 

  • Froitzheim N (2001) Origin of the Monte Rosa nappe in the Pennine Alps: a new working hypothesis. Geol Soc Am Bull 113:604–614

    Article  CAS  Google Scholar 

  • Froitzheim N, Manatschal G (1996) Kinematics of Jurassic rifting, mantle exhumation, and passive-margin formation in the Austroalpine and Penninic nappes (eastern Switzerland). Geol Soc Am Bull 108:1120–1133

    Article  Google Scholar 

  • Froitzheim N, Schmid S, Frey M (1996) Mesozoic paleogeography and the timing of eclogite-facies metamorphism in the Alps: a working hypothesis. Eclogae Geol Helv 89:81–110

    Google Scholar 

  • Gebauer D (1994) A P–T–t path for some high-pressure ultramafic/mafic rock associations and their felsic country-rocks based on SHRIMP-dating of magmatic and metamorphic zircon domains. Example: Central Swiss Alps. Extended abstract version for 16th general meeting of IMA, Pisa, Italy, 4–9 Sept, Abstr Vol, pp 139–140

  • Gebauer D (1996) A P–T–t path for an (ultra?-) high-pressure ultramafic/mafic rock association and its country rocks based on SHRIMP-dating of magmatic and metamorphic zircon domains. Example: Alpe Arami (Central Swiss Alps). In: Earth processes: reading the isotopic code. Geophys Monogr 95:107–111

    Google Scholar 

  • Gebauer D (1999) Alpine geochronology of the Central and Western Alps: new constraints for a complex geodynamic evolution. Schweiz Mineral Petrogr Mitt 79:191–208

    CAS  Google Scholar 

  • Gebauer D, Schertl H-P, Brix M, Schreyer W (1997) 35 Ma old ultrahigh-pressure metamorphism and evidence for very rapid exhumation in the Dora Maira Massif, Western Alps. Lithos 41:35–24

    Article  Google Scholar 

  • Gradstein FM, Agterberg FP, Ogg JG, Hardenbol S, Vanveen P, Thierry J, Huang ZH (1994) A Mesozoic time-scale. J Geophys Res Solid Earth 99(B12):24051–24074

    Google Scholar 

  • Gulson BL (1973) Age relations in the Bergell region of the South-East Swiss Alps: with some geochemical comparisons. Eclogae Geol Helv 66:293–313

    CAS  Google Scholar 

  • Heinrich CA (1983) Die regionale Hochdruckmetamorphose der Aduladecke, Zentralalpen, Schweiz. Dissertation, ETH Zürich, No 7282

  • Hellman PL, Green TH (1979) The role of sphene as an accessory phase in the high pressure partial melting of hydrous mafic compositions. Earth Planet Sci Lett 42:191–201

    Article  CAS  Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314

    CAS  Google Scholar 

  • Huber RK, Marquer D (1998) The tectonometamorphic history of the peridotitic Chiavenna unit from Mesozoic to Tertiary tectonics: a restoration controlled by melt polarity indicators (Eastern Swiss Alps). Tectonophysics 296:205–223

    Article  Google Scholar 

  • Kelley SP, Arnaud NO, Okay AI, (1994) Anomalously old Ar–Ar ages in high pressure metamorphic terrains. Mineral Mag 58A:468–469

    Google Scholar 

  • Lapen TJ, Mahlen NJ, Johnson CM, Beard BL, Baumgartner LP (2002) Lu–Hf geochronology of UHP metamorphism in the Zermatt–Saas ophiolite, Lago de Cignana, Italy. Abstracts of the 12th Annual Goldschmidt Conference. Geochim Cosmochim Acta 66:A431

    Google Scholar 

  • Le Pichon X, Bergerat F, Roulet M-J (1988) Plate kinematics and tectonics leading to the Alpine belt formation; a new analysis. In: Clark SP, Burchfiel BC, Suppe J (eds) Processes in continental lithospheric deformation. Geol Soc Am Spec Paper 218:111–131

    Google Scholar 

  • Liati A, Gebauer D (2001) U–Pb SHRIMP-dating of zircon domains from eclogites of Antrona (Western Alps): evidence for a Valais Ocean origin. EUG 11. J Conf Abstr 6:600

    Google Scholar 

  • Liati A, Gebauer D (2002) The Gruf Complex (Central Alps) as part of the Adula nappe: geochronological evidence and geodynamic significance. Eur J Mineral 14(1):101

    Google Scholar 

  • Liati A, Gebauer D, Fanning M (2000) U–Pb SHRIMP dating of zircon from the Novate granite (Bergell, Central Alps): evidence for Oligocene-Miocene magmatism, Jurassic/Cretaceous continental rifting and opening of the Valais trough. Schweiz Mineral Petrogr Mitt 80:305–316

    CAS  Google Scholar 

  • Liati A, Gebauer D, Froitzheim N (2002) Late Cretaceous basic oceanic magmatism in the Valais ocean, Western and Central Alps: geochronological evidence and paleogeographic implications. Annual Meeting of the Swiss Academy of Natural Sciences, Davos, Abstr vol 1:26

  • Liati A, Gebauer D, Froitzheim N, Fanning M (2003) Origin and Geodynamic significance of metabasic rocks from the Antrona ophiolites (Western Alps): new insights from SHRIMP-dating. EUG12. J Conf Abstr EAE03-A-12648

  • Ludwig K (2000) User's manual for Isoplot/Ex, version 2.4. A geochronological toolkit for Microsoft Excel. Berkeley Geochronological Center, Spec Publ no 1a

  • Malod JA, Mauffret (1990) A Iberian plate motion during the Mesozoic. Tectonophysics 184:261–278

    Google Scholar 

  • Marquer D, Challandes N, Schaltegger U (1998) Early Permian granitoid magmatism in Brianconnais terranes: Truzzo granite and Roffna rhyolite (Eastern Penninic nappes, Swiss and Italian Alps). Schweiz Mineral Petrogr Mitt 78:397–414

    CAS  Google Scholar 

  • Mayer A, Abouchami W, Dal Piaz DV (1999) Eocene Sm–Nd age for the eclogitic metamorphism of the Zermatt–Saas ophiolite in Ayas valley, Western Alps. Eur Union Geosci 10 Abstr Vol 809

  • Milnes AG (1974) Structure of the Pennine Zone (Central Alps): a new working hypothesis. Geol Soc Am Bull 85:1727–1732.

    Google Scholar 

  • Oberhänsli R (1978) Chemische Untersuchungen an Glaukophan-führenden basischen Gesteinen aus den Bündnerschiefern Graubündens. Schweiz Mineral Petrogr Mitt 58:139–156

    Google Scholar 

  • Paces JB, Miller JD (1993) Precise U–Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic process associated with the 1.1 Ga Midcontinent Rift System. J Geophys Res 98:13997–14013

    CAS  Google Scholar 

  • Peters T, Stettler A (1987) Radiometric age, thermobarometry and mode of emplacement of the Totalp peridotite in the Eastern Swiss Alps. Schweiz Mineral Petrogr Mitt 67:285–294

    CAS  Google Scholar 

  • Platt JP (1986) Dynamics of orogenic wedges and the uplift of high-pressure metamorphic rocks. Geol Soc Am Bull 97:1037–1053

    Google Scholar 

  • Ring U (1992) The Alpine geodynamic evolution of Penninic nappes in the eastern Central Alps: geothermobarometric and kinematic data. J Metamorph Geol 10:33–53

    CAS  Google Scholar 

  • Rosenbaum G, Lister GS, Duboz C (2002) Relative motions of Africa, Iberia and Europe during Alpine orogeny. Tectonophysics 359:117–129

    Article  Google Scholar 

  • Rubatto D, Gebauer D (1999) Eo/Oligocene (35 Ma) high-pressure metamorphism in the Gornergrat Zone (Monte Rosa, Western Alps): implications for paleogeography. Schweiz Mineral Petrogr Mitt 79:353–362

    CAS  Google Scholar 

  • Rubatto D, Hermann J (2003) Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): implication for Zr and Hf budget in subduction zones. Geochim Cosmochim Acta (in press)

  • Rubatto D, Gebauer D, Fanning M (1998) Jurassic formation and Eocene subduction of the Zermatt-Saas Fee ophiolites: implications for the geodynamic evolution of the Central and Western Alps. Contrib Mineral Petrol 132:269–287

    Article  CAS  Google Scholar 

  • Rubatto D, Gebauer D, Compagnoni R (1999) Dating of eclogite-facies zircons: the age of Alpine metamorphism in the Sesia-Lanzo Zone (Western Alps). Earth Planet Sci Lett 167:141–158

    Article  CAS  Google Scholar 

  • Saunders AD, Tarney J (1984) Geochemical characteristics of basaltic volcanism within back-arc basins. In: Kokelaar BP, Howells MF (eds) Marginal basin geology. Spec Publ Geol Soc Lond 16:59–76

    Google Scholar 

  • Schaltegger U, Gebauer D (1999) Pre-Alpine geochronology of the Central, Western and Southern Alps. Schweiz Mineral Petrogr Mitt 79:79–88

    CAS  Google Scholar 

  • Schaltegger U, Desmurs L, Mantschal G, Müntener O, Meier M, Frank M, Bernoulli D (2002) The transition from rifting to sea-floor spreading within a magma-poor rifted margin: field and isotopic constraints. Terra Nova 14:156–162

    CAS  Google Scholar 

  • Schmid SM, Rück P, Schreurs G (1990) The significance of the Schams nappes for the reconstruction of the paleotectonic and orogenic evolution of he Penninic zone along the NFP 20-East traverse (Grisons, Eastern Switzerland). Mem Soc Geol Suisse 1:263–287

    Google Scholar 

  • Schmid SM, Berger A, Davidson C, Gieré R, Hermann J, Nievergelt P, Pusching R, Rosenberg C (1996a) The Bergell pluton (Southern Switzerland, Northern Italy): overview accompanying a geological–tectonic map of the intrusion and surrounding country rocks. Schweiz Mineral Petrogr Mitt 76:329–355

    CAS  Google Scholar 

  • Schmid SM, Pfiffner OA, Froitzheim N, Schönborn G, Kissling E (1996b) Geophysical-geological transect and tectonic evolution of the Swiss–Italian Alps. Tectonics 15:1036–1064

    Google Scholar 

  • Schmid SM, Pfiffner OA, Schreurs G (1997) Rifting and collision in the Penninic zone of eastern Switzerland. In: Pfiffner OA, Lehner P, Heitzmann PZ, Mueler S, Steck A (eds) Deep structure of the Swiss Alps: results of NRP 20. Birkhäuser, Basel, pp 160–185

  • Schmutz HU (1974) Der mafitit-Ultramafitit-Komplex zwischen Chiavenna und Val Bondasca (Prov. Sondrio, Italien; Kt. Graubünden, Schweiz). Dissertation, ETH Zürich, No 5231

  • Sibuet JC, Colette BJ (1991) Triple junctions of Bay of Biscay and North Atlantic. New constraints on the kinematic evolution. Geology 19:522–525

    Article  Google Scholar 

  • Sommerauer J (1974) Trace elements distribution patterns and mineralogical stability of zircons: an application for combined electron microprobe techniques. Electron Microsc Soc S Afr Proc 4:71–72

    CAS  Google Scholar 

  • Srivastava SP, Roest WR, Kovacs LC, Oakay G, Levesque S, Verhoef J, Macnab R (1990) Motion of Iberia since the Late Jurassic. Results from detailed aeromagnetic measurements in Newfoundland Basin. Tectonophysics 184:229–260

    Google Scholar 

  • Stampfli GM (1993) Le Briançonnais, terrain exotique dans les Alpes? Eclogae Geol Helv 86:1-45

    Google Scholar 

  • Stampfli GM, Mosar J, Marquer D, Marchant R, Baudin T, Borel G (1998) Subduction and obduction processes in the Swiss Alps. Tectonophysics 296:159–204

    Article  Google Scholar 

  • Steinmann M (1994) Die Nordpenninischen Bündnerschiefer der Zentralalpen Graubündens: Tektonik, Stratigraphie und Beckenentwicklung. Dissertation, ETH Zürich, No 10668

  • Stern RA, Amelin Y (2003) Assessment of errors in SIMS zircon U–Pb geochronology using a natural zircon standard and NIST SRM 610 glass. Chem Geol 1–32

  • Stucki A (2001) High grade Mesozoic ophiolites of the Southern Steep Belt, Central Alps. Dissertation, ETH Zürich, No 14206

  • Sun S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Spec Publ Geol Soc Lond 42:313–345

    Google Scholar 

  • Talerico C (2001) Petrological and chemical investigation of a metamorphosed oceanic crust-mantle section (Chiavenna, Bergell Alps). Dissertation, ETH Zürich, No 13934

  • Tera F, Wasserburg GJ (1972) U–Th–Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planet Sci Lett 14:281–304

    Article  CAS  Google Scholar 

  • Trümpy R (1975) Penninic–Austroalpine boundary in the Swiss Alps: a presumed former continental margin and its problems. Am J Sci 275:209–238

    Google Scholar 

  • Trümpy R (1980) Geology of Switzerland, a guide book. Part A: an outline of the geology of Switzerland. Scweiz Geol Komm, Wepf, Basel

    Google Scholar 

  • Wenk E (1955) Eine Strukturkarte der Tessiner Alpen. Schweiz Mineral Petrogr Mitt 35:139–152

    Google Scholar 

  • Williams IS (1998) U–Th–Pb Geochronology by ion microprobe. In: McKibben MA, Shanks WC III, Ridley WI (eds) Applications of microanalytical techniques to understanding mineralizing processes. Rev Econ Geol 7:1–35

    Google Scholar 

Download references

Acknowledgements

We very much appreciate the help of M. Hamilton and R.A. Stern during various stages of the SHRIMP work. R. Huber is thanked for her help in part of the field work and for discussions. W. Wittwer is cordially thanked for zircon separation. Numerous fruitful discussions with N. Froitzheim, Bonn, as well as his help with the geochemical analyses are greatly appreciated. Constructive comments by V. Trommsdorff, Zürich, on an early draft of the manuscript, as well as by W. Frisch, Tübingen and A. Möller, Potsdam, who reviewed this paper, are gratefully acknowledged. Many thanks also to W. Schreyer, Bochum, for the editorial support. This study was supported by a grant of the Swiss National Science Foundation (20-52662.99).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthi Liati.

Additional information

Editorial responsibility: W. Schreyer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liati, A., Gebauer, D. & Fanning, C.M. The youngest basic oceanic magmatism in the Alps (Late Cretaceous; Chiavenna unit, Central Alps): geochronological constraints and geodynamic significance. Contrib Mineral Petrol 146, 144–158 (2003). https://doi.org/10.1007/s00410-003-0485-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-003-0485-7

Keywords

Navigation