Skip to main content

Advertisement

Log in

Improved Survival of IPF patients Treated With Antifibrotic Drugs Compared With Untreated Patients

  • IDIOPATHIC PULMONARY FIBROSIS
  • Published:
Lung Aims and scope Submit manuscript

Abstract

Purpose

Pirfenidone and nintedanib unequivocally inhibit FVC decline, but have been inconsistently linked to reduced mortality in phase III studies. On the contrary, real-world data show a survival benefit of antifibrotic drugs. However, it is unknown what this benefit is across different Gender, Age, and Physiology (GAP) stages.

Research Questions

Is there a difference in transplant-free (TPF) survival of IPF patients receiving antifibrotic drugs (IPFAF) compared with an untreated cohort (IPFnon−AF)? Is this different for patients with GAP stage I, II, or III.

Methods

This is a single-center observational cohort study using prospectively included patients diagnosed with IPF between 2008–2018. Primary outcomes were TPF survival difference and 1-, 2-, and 3-year cumulative mortality for IPFAF and IPFnon−AF. This was repeated after stratification for GAP stage.

Results

In total, 457 patients were included. The median transplant-free survival was 3.4 years in IPFAF (n = 313) and 2.2 years in IPFnon−AF (n = 144, p = 0.005). For GAP stage II, a median survival of 3.1 and 1.7 years was noted for IPFAF (n = 143) and IPFnon−AF (n = 59, p < 0.001), respectively. A significantly lower 1-, 2-, and 3- year cumulative mortality was found for IPFAF with GAP stage II (1 yr: 7.0% vs 35.6%, 2 yr: 26.6% vs 55.9%, and 3 yr: 46.9% vs 69.5%). The 1-year cumulative mortality of IPFAF with GAP III was also significantly lower (19.0% vs 65.0%).

Conclusion

This large real-world study showed a survival benefit in IPFAF compared with IPFnon−AF. This especially holds true for patients with GAP stage II and III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AF:

Antifibrotic treatment

DLCOc:

Diffusing capacity for carbon monoxide corrected for hemoglobin

FPF:

Familial pulmonary fibrosis

FVC:

Forced vital capacity

GAP:

Gender, age, physiology model

HRCT:

High-resolution computed tomography

IPF:

Idiopathic pulmonary fibrosis

IPFAF :

IPF patients treated with pirfenidone and/or nintedanib

IPFnon AF :

IPF patients not treated with antifibrotic drugs

Ltx:

Lung transplantation

MDD:

Multi-disciplinary discussion

PANTHER-IPF:

Prednisone, azathioprine, and N-acetylcysteine: a study that evaluates response in IPF

PF:

Pulmonary fibrosis

PFT:

Pulmonary function test

TPF:

Transplant-free

UIP:

Usual interstitial pneumonia

References

  1. Raghu G, Collard HR, Egan JJ et al (2011) An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 183(6):788–824

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ley B, Collard HR, King TE (2011) Clinical course and prediction of survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 183(4):431–440

    Article  PubMed  Google Scholar 

  3. King TE, Bradford WZ, Castro-Bernardini S et al (2014) A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med 370(22):2083–2092

    Article  PubMed  Google Scholar 

  4. Noble PW, Albera C, Bradford WZ et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): Two randomised trials. Lancet. 2011;377(9779):1760–9. Available from: http://dx.doi.org/https://doi.org/10.1016/S0140-6736(11)60405-4

  5. Richeldi L, Costabel U, Selman M et al (2011) Efficacy of a tyrosine kinase inhibitor in idiopathic pulmonary fibrosis. N Engl J Med. 365(12):1079–1087. https://doi.org/10.1056/NEJMoa1103690

    Article  CAS  PubMed  Google Scholar 

  6. Richeldi L, du Bois RM, Raghu G et al (2014) Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med 370(22):2071–2082

    Article  PubMed  Google Scholar 

  7. Taniguchi H, Ebina M, Kondoh Y et al (2010) Pirfenidone in idiopathic pulmonary fibrosis. Eur Respir J 35(4):821–829

    Article  CAS  PubMed  Google Scholar 

  8. Fang C, Huang H, Guo J et al (2020) Real-world experiences: Efficacy and tolerability of pirfenidone in clinical practice. PLoS ONE 15(1):1–15

    Article  Google Scholar 

  9. Cameli P, Refini RM, Bergantini L et al (2020) Long-term follow-up of patients with idiopathic pulmonary fibrosis treated with pirfenidone or nintedanib: a real-life comparison study. Front Mol Biosci 7:1–8

    Article  Google Scholar 

  10. Bando M, Yamauchi H, Ogura T et al (2016) Clinical experience of the long-term use of pirfenidone for idiopathic pulmonary fibrosis. Intern Med 55(5):443–448

    Article  CAS  PubMed  Google Scholar 

  11. Antoniou K, Markopoulou K, Tzouvelekis A et al (2020) Efficacy and safety of nintedanib in a Greek multicentre idiopathic pulmonary fibrosis registry: a retrospective, observational, cohort study. ERJ Open Res 6(1):00172–02019. https://doi.org/10.1183/23120541.00172-2019

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jo HE, Glaspole I, Grainge C et al (2017) Baseline characteristics of idiopathic pulmonary fibrosis: analysis from the australian idiopathic pulmonary fibrosis registry. Eur Respir J. https://doi.org/10.1183/13993003.01592-2016

    Article  PubMed  Google Scholar 

  13. Wright WA, Crowley LE, Parekh D et al (2021) Real-world retrospective observational study exploring the effectiveness and safety of antifibrotics in idiopathic pulmonary fibrosis. BMJ Open Respir Res 8(1):1–8

    Google Scholar 

  14. Behr J, Prasse A, Wirtz H et al (2020) Survival and course of lung function in the presence or absence of antifibrotic treatment in patients with idiopathic pulmonary fibrosis: Long-term results of the INSIGHTS-IPF registry. Eur Respir J. https://doi.org/10.1183/13993003.02279-2019

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ley B, Ryerson CJ, Vittinghoff E et al (2012) A multidimensional index and staging system for idiopathic pulmonary fibrosis. Ann Intern Med 156(10):684–695

    Article  PubMed  Google Scholar 

  16. Kim ES, Choi SM, Lee J et al (2015) Validation of the GAP SCORE in Korean patients with idiopathic pulmonary fibrosis. Chest 147(2):430–437

    Article  PubMed  Google Scholar 

  17. Hyldgaard C, Hilberg O, Muller A et al (2014) A cohort study of interstitial lung diseases in central Denmark. Respir Med 108(5):793–979. https://doi.org/10.1016/j.rmed.2013.09.002

    Article  PubMed  Google Scholar 

  18. Krauss E, Tello S, Wilhelm J et al (2020) Assessing the effectiveness of pirfenidone in idiopathic pulmonary fibrosis: long-term, real-world data from European IPF Registry (eurIPFreg). J Clin Med 9(11):3763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gao J, Kalafatis D, Carlson L et al (2021) Baseline characteristics and survival of patients of idiopathic pulmonary fibrosis: a longitudinal analysis of the Swedish IPF Registry. Respir Res. https://doi.org/10.1186/s12931-021-01634-x

    Article  PubMed  PubMed Central  Google Scholar 

  20. Guenther A, Krauss E, Tello S et al (2018) The European IPF registry (eurIPFreg): Baseline characteristics and survival of patients with idiopathic pulmonary fibrosis. Respir Res 19(1):1–10

    Article  Google Scholar 

  21. Kaunisto J, Salomaa ER, Hodgson U et al (2019) Demographics and survival of patients with idiopathic pulmonary fibrosis in the FinnishIPF registry. ERJ Open Res. https://doi.org/10.1183/23120541.00170-2018

    Article  PubMed  PubMed Central  Google Scholar 

  22. The Idiopathic Pulmonary Fibrosis Clinical Research Network*. Prednisone, Azathioprine, and N -Acetylcysteine for Pulmonary Fibrosis. N Engl J Med. 2012;366(21):1968–1977.

  23. Raghu G, Rochwerg B, Zhang Y et al (2015) An official ATS/ERS/JRS/ALAT clinical practice guideline: Treatment of idiopathic pulmonary fibrosis: an update of the 2011 clinical practice guideline. Am J Respir Crit Care Med 192(2):e3-19

    Article  PubMed  Google Scholar 

  24. Salisbury ML, Tolle LB, Xia M et al (2017) Possible UIP pattern on high-resolution computed tomography is associated with better survival than definite UIP in IPF patients. Respir Med 131:229–235

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lederer DJ, Caplan-Shaw CE, O’Shea MK et al (2006) Racial and ethnic disparities in survival in lung transplant candidates with idiopathic pulmonary fibrosis. Am J Transplant 6(2):398–403

    Article  CAS  PubMed  Google Scholar 

  26. Ryerson CJ, Kolb M, Richeldi L et al (2019) Effects of nintedanib in patients with idiopathic pulmonary fibrosis by GAP stage. ERJ Open Res. https://doi.org/10.1183/23120541.00127-2018

    Article  PubMed  PubMed Central  Google Scholar 

  27. Abe M, Tsushima K, Yoshioka K et al (2020) The gender–age–physiology system as a prognostic model in patients with idiopathic pulmonary fibrosis treated with nintedanib: A longitudinal cohort study. Adv Respir Med 88(5):369–376

    Article  PubMed  Google Scholar 

  28. Tomassetti S, Gurioli C, Ryu JH et al (2015) The impact of lung cancer on survival of idiopathic pulmonary fibrosis. Chest 147(1):157–164. https://doi.org/10.1378/chest.14-0359

    Article  PubMed  Google Scholar 

  29. Ozawa Y, Suda T, Naito T et al (2009) Cumulative incidence of and predictive factors for lung cancer in IPF. Respirology 14(5):723–728

    Article  PubMed  Google Scholar 

  30. Reck M, Kaiser R, Mellemgaard A et al (2014) Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): A phase 3, double-blind, randomised controlled trial. Lancet Oncol 15(2):143–155

    Article  CAS  PubMed  Google Scholar 

  31. Gottfried M, Bennouna J, Bondarenko I, Douillard JY, Heigener DF, Krzakowski M et al (2017) Efficacy and safety of nintedanib plus docetaxel in patients with advanced lung adenocarcinoma: complementary and exploratory analyses of the phase III LUME-Lung 1 study. Target Oncol 12(4):475–485

    Article  PubMed  Google Scholar 

  32. Miura Y, Saito T, Tanaka T et al (2018) Reduced incidence of lung cancer in patients with idiopathic pulmonary fibrosis treated with pirfenidone. Respir Investig 56(1):72–79. https://doi.org/10.1016/j.resinv.2017.09.007

    Article  PubMed  Google Scholar 

  33. Krämer M, Markart P, Drakopanagiotakis F et al (2020) Pirfenidone inhibits motility of NSCLC cells by interfering with the urokinase system. Cell Signal 65:109432. https://doi.org/10.1016/j.cellsig.2019.109432

    Article  CAS  PubMed  Google Scholar 

  34. Dhooria S, Agarwal R, Sehgal IS et al (2020) A real-world study of the dosing and tolerability of pirfenidone and its effect on survival in idiopathic pulmonary fibrosis. Sarcoidosis Vasc Diffus Lung Dis 37(2):148–157

    Google Scholar 

  35. Dobashi M, Tanaka H, Taima K et al (2021) The efficacy of nintedanib in 158 patients with idiopathic pulmonary fibrosis in real-world settings: A multicenter retrospective study. SAGE Open Med 9:205031212110233

    Article  Google Scholar 

  36. Fletcher SV, Jones MG, Renzoni EA et al (2018) Safety and tolerability of nintedanib for the treatment of idiopathic pulmonary fibrosis in routine UK clinical practice. ERJ Open Res 4(4):00049–02018

    Article  PubMed  PubMed Central  Google Scholar 

  37. Okuda R, Hagiwara E, Baba T et al (2013) Safety and efficacy of pirfenidone in idiopathic pulmonary fibrosis in clinical practice. Respir Med 107(9):1431–1437. https://doi.org/10.1016/j.rmed.2013.06.011

    Article  PubMed  Google Scholar 

  38. Vancheri C, Sebastiani A, Tomassetti S et al (2019) Pirfenidone in real life: A retrospective observational multicentre study in Italian patients with idiopathic pulmonary fibrosis. Respir Med 156:78–84. https://doi.org/10.1016/j.rmed.2019.08.006

    Article  PubMed  Google Scholar 

  39. Wijsenbeek MS, Grutters JC, Wuyts WA (2015) Early experience of pirfenidone in daily clinical practice in Belgium and the Netherlands: a retrospective cohort analysis. Adv Ther 32(7):691–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cottin V, Koschel D, Günther A et al (2018) Long-term safety of pirfenidone: results of the prospective, observational PASSPORT study. ERJ Open Res. https://doi.org/10.1183/23120541.00084-2018

    Article  PubMed  PubMed Central  Google Scholar 

  41. Antoniou K, Markopoulou K, Tzouvelekis A et al (2020) Efficacy and safety of nintedanib in a Greek multicentre idiopathic pulmonary fibrosis registry: a retrospective, observational, cohort study. ERJ Open Res. https://doi.org/10.1183/23120541.00172-2019

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thanks the included patients and research assistants K. Verhoeven, A. Verkleij-van Laarhoven, and A. Wind.

Funding

This study was funded by a ZonMw TopZorg grant (Grant Numbers: 842002001 and 842002003) and a TZO grant (Grant Number: 10070012010004).

Author information

Authors and Affiliations

Authors

Contributions

MGJPP: Collected the data, performed the statistical analysis, drafted the manuscript and rewrote the manuscript after peer review (guarantor of the paper). CHMVM: Played a major role in the conception of this study and peer reviewed the article. IW: Peer reviewed the article. ADMV: Peer reviewed the article. MV: Peer reviewed the article. JCG: Played a major role in the conception of this study and peer reviewed the article.

Corresponding author

Correspondence to Mark G. J. P. Platenburg.

Ethics declarations

Conflict of Interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 861 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Platenburg, M.G.J.P., van Moorsel, C.H.M., Wiertz, I.A. et al. Improved Survival of IPF patients Treated With Antifibrotic Drugs Compared With Untreated Patients. Lung 201, 335–343 (2023). https://doi.org/10.1007/s00408-023-00628-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-023-00628-4

Keywords

Navigation