Skip to main content
Log in

Endogenous Adenosine 5′-Monophosphate, But Not Acetylcholine or Histamine, is Associated with Asthma Control, Quality of Life, and Exacerbations

  • ASTHMA
  • Published:
Lung Aims and scope Submit manuscript

Abstract

Objective

Endogenous adenosine 5′-monophosphate (AMP), acetylcholine (ACh), and histamine (HA) are known to be important in bronchial contraction, but their clinical relevance to asthma is poorly understood. We aimed to quantify endogenous AMP, ACh, and HA in induced sputum samples and explore their relationships with asthma control and exacerbations.

Methods

20 healthy subjects and 112 asthmatics underwent clinical assessment, sputum induction, and blood sampling. The level of asthma control was determined by the asthma control test (ACT) questionnaire. Asthma exacerbation was evaluated according to the criteria of the American Thoracic Society/European Respiratory Society. Levels of AMP, ACh, and HA in sputum were measured by liquid chromatography coupled to tandem mass spectrometry. IL-β, IL-4, IL-5, IL-6, IL-8, IL-13, IL-17A, TNF-α, IFN-γ, and macrophage-derived chemokine (MDC) were also measured.

Results

Compared to healthy controls, asthmatics had higher levels of HA, lower levels of ACh, and similar levels of AMP in induced sputum samples. Compared to controlled asthma (= 54), uncontrolled asthma (= 58) showed higher AMP levels (= 0.002), but similar HA and ACh levels. AMP was negatively correlated with ACT scores (= − 0.348) and asthma quality of life questionnaire scores (= − 0.188) and positively correlated with blood monocytes percentage (= 0.195), sputum MDC (= 0.214), and IL-6 levels (= 0.196). Furthermore, AMP was associated with an increased risk of exacerbations in the preceding year.

Conclusion

Endogenous AMP, but not ACh or HA, was associated with asthma control, quality of life, and exacerbations in the previous year, which indicates that AMP could be a clinically useful biomarker of asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AHR:

Airway hyper responsiveness

ACh:

Acetylcholine

AMP:

Adenosine 5′-monophosphate

AChE:

Acetylcholinesterase

ACT:

Asthma control test

AQLQ:

Asthma quality of life questionnaire

ASAN:

Australasian severe asthma network

ATS:

American thoracic society

BMI:

Body mass index

CA:

Controlled asthma

CRF:

Case report form

CI:

Confidence interval

COL4A3:

Collagen type 4 alpha 3

ERS:

European respiratory society.

EPA:

Exacerbation-prone asthma

FEV1 :

Forced expiratory volume in 1 s

FVC:

Forced vital capacity

FT-ICR-MS:

Fourier transform ion cyclotron resonance mass spectrometry

FeNO:

Fractional exhaled nitric oxide

GINA:

Global initiative for asthma

HA:

Histamine

HADS:

Hospital anxiety and depression scale

HADS-A:

Hospital anxiety and depression scale-anxiety

HADS-D:

Hospital anxiety and depression scale-depression

IL:

Interleukin

IFN:

Interferon

ICS:

Inhaled corticosteroid

LC–MS/MS:

Liquid chromatography coupled to tandem mass spectrometry

LLD:

Lower limit of detection

IRR:

Incidence rate ratio

MDC:

Macrophage-derived chemokine

N:

Number

OR:

Odds ratio

Q:

Quartile

SAWD:

Severe asthma web-based database

SPT:

Skin prick tests

SD:

Standard error

SEM:

Standard error of the mean

TNF:

Tumor necrosis factor

TGF:

Transforming growth factor

UA:

Uncontrolled asthma

References

  1. Masoli M, Fabian D, Holt S et al (2004) The global burden of asthma: executive summary of the GINA dissemination committee report. Allergy 59(5):469–478. https://doi.org/10.1111/j.1398-9995.2004.00526.x

    Article  PubMed  Google Scholar 

  2. Stern J, Pier J, Litonjua AA (2020) Asthma epidemiology and risk factors. Semin Immunopathol 42(1):5–15. https://doi.org/10.1007/s00281-020-00785-1

    Article  PubMed  Google Scholar 

  3. Global Initiative for Asthma (2020) Global Strategy for Asthma Management and Prevention www.ginasthma.org

  4. Hallstrand TS, Leuppi JD, Joos G et al (2018) ERS technical standard on bronchial challenge testing: pathophysiology and methodology of indirect airway challenge testing. Eur Respir J 52(5):1801033. https://doi.org/10.1183/13993003.01033-2018

    Article  CAS  PubMed  Google Scholar 

  5. Kistemaker LE, Gosens R (2015) Acetylcholine beyond bronchoconstriction: roles in inflammation and remodeling. Trends Pharmacol Sci 36(3):164–171. https://doi.org/10.1016/j.tips.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  6. Gori S, Vermeulen M, Remes-Lenicov F et al (2017) Acetylcholine polarizes dendritic cells toward a Th2-promoting profile. Allergy 72(2):221–231. https://doi.org/10.1111/all.12926

    Article  CAS  PubMed  Google Scholar 

  7. Dunford PJ, Holgate ST (2010) The role of histamine in asthma. Adv Exp Med Biol 709:53–66. https://doi.org/10.1007/978-1-4419-8056-4_6

    Article  CAS  PubMed  Google Scholar 

  8. van den Berge M, Polosa R, Kerstjens HA et al (2004) The role of endogenous and exogenous AMP in asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol 114(4):737–746. https://doi.org/10.1016/j.jaci.2004.05.071

    Article  CAS  PubMed  Google Scholar 

  9. Taylor DA, Jensen MW, Kanabar V et al (1999) A dose-dependent effect of the novel inhaled corticosteroid ciclesonide on airway responsiveness to adenosine-5′-monophosphate in asthmatic patients. Am J Respir Crit Care Med 160(1):237–243. https://doi.org/10.1164/ajrccm.160.1.9809046

    Article  CAS  PubMed  Google Scholar 

  10. Cockcroft DW (2010) Direct challenge tests: airway hyperresponsiveness in asthma: its measurement and clinical significance. Chest 138(2 Suppl):18s–24s. https://doi.org/10.1378/chest.10-0088

    Article  CAS  PubMed  Google Scholar 

  11. Tsurikisawa N, Oshikata C, Tsuburai T et al (2010) Bronchial reactivity to histamine is correlated with airway remodeling in adults with moderate to severe asthma. J Asthma 47(8):841–848. https://doi.org/10.3109/02770903.2010.504876

    Article  CAS  PubMed  Google Scholar 

  12. Kim CK, Hagan JB (2004) Sputum tests in the diagnosis and monitoring of asthma. Ann Allergy Asthma Immunol 93(2):112–122. https://doi.org/10.1016/s1081-1206(10)61462-7

    Article  PubMed  Google Scholar 

  13. Nathan RA, Sorkness CA, Kosinski M et al (2004) Development of the asthma control test: a survey for assessing asthma control. J Allergy Clin Immunol 113(1):59–65. https://doi.org/10.1016/j.jaci.2003.09.008

    Article  PubMed  Google Scholar 

  14. Juniper EF, Norman GR, Cox FM et al (2001) Comparison of the standard gamble, rating scale, AQLQ and SF-36 for measuring quality of life in asthma. Eur Respir J 18(1):38–44. https://doi.org/10.1183/09031936.01.00088301

    Article  CAS  PubMed  Google Scholar 

  15. Wang G, Wang F, Gibson PG et al (2017) Severe and uncontrolled asthma in China: a cross-sectional survey from the Australasian severe asthma network. J Thorac Dis 9(5):1333–1344. https://doi.org/10.21037/jtd.2017.04.74

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhou X, Ding FM, Lin JT et al (2009) Validity of asthma control test for asthma control assessment in Chinese primary care settings. Chest 135(4):904–910. https://doi.org/10.1378/chest.08-0967

    Article  PubMed  Google Scholar 

  17. Jia CE, Zhang HP, Lv Y et al (2013) The asthma control Test and asthma control questionnaire for assessing asthma control: systematic review and meta-analysis. J Allergy Clin Immunol 131(3):695–703. https://doi.org/10.1016/j.jaci.2012.08.023

    Article  PubMed  Google Scholar 

  18. Reddel HK, Taylor DR, Bateman ED et al (2009) An official american thoracic society/european respiratory society statement: asthma control and exacerbations: standardizing endpoints for clinical asthma trials and clinical practice. Am J Respir Crit Care Med 180(1):59–99. https://doi.org/10.1164/rccm.200801-060ST

    Article  PubMed  Google Scholar 

  19. Wang G, Baines KJ, Fu JJ et al (2016) Sputum mast cell subtypes relate to eosinophilia and corticosteroid response in asthma. Eur Respir J 47(4):1123–1133. https://doi.org/10.1183/13993003.01098-2015

    Article  CAS  PubMed  Google Scholar 

  20. Dunn WB, Broadhurst D, Begley P et al (2011) Procedures for large-scale metabolic profiling of serum and serum using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc 6(7):1060–1083

    Article  CAS  Google Scholar 

  21. Wang J, Zhang T, Shen X et al (2016) Serum metabolomics for early diagnosis of esophageal squamous cell carcinoma by UHPLC-QTOF/MS. Metabolomics 12(7):116

    Article  Google Scholar 

  22. Dougherty RH, Fahy JV (2009) Acute exacerbations of asthma: epidemiology, biology and the exacerbation-prone phenotype. Clin Exp Allergy 39(2):193–202. https://doi.org/10.1111/j.1365-2222.2008.03157.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Park GM, Han HW, Kim JY et al (2016) Association of symptom control with changes in lung function, bronchial hyperresponsiveness, and exhaled nitric oxide after inhaled corticosteroid treatment in children with asthma. Allergol Int 65(4):439–443. https://doi.org/10.1016/j.alit.2016.03.011

    Article  CAS  PubMed  Google Scholar 

  24. Ammar M, Bahloul N, Amri O et al (2022) Oxidative stress in patients with asthma and its relation to uncontrolled asthma. J Clin Lab Anal 36(5):e24345. https://doi.org/10.1002/jcla.24345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang Y, Do DC, Hu X et al (2021) CaMKII oxidation regulates cockroach allergen-induced mitophagy in asthma. J Allergy Clin Immunol 147(4):1464-1477.e11. https://doi.org/10.1016/j.jaci.2020.08.033

    Article  CAS  PubMed  Google Scholar 

  26. Hinchy EC, Gruszczyk AV, Willows R et al (2018) Mitochondria-derived ROS activate AMP-activated protein kinase (AMPK) indirectly. J Biol Chem 293(44):17208–17217. https://doi.org/10.1074/jbc.RA118.002579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Loo SL, Wark PAB (2016) Recent advances in understanding and managing asthma. F1000Res. https://doi.org/10.12688/f1000research.9236.1

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ilmarinen P, Tuomisto LE, Niemelä O et al (2016) Comorbidities and elevated IL-6 associate with negative outcome in adult-onset asthma. Eur Respir J 48(4):1052–1062. https://doi.org/10.1183/13993003.02198-2015

    Article  CAS  PubMed  Google Scholar 

  29. Tanaka T, Narazaki M, Kishimoto T (2014) IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 6(10):a016295. https://doi.org/10.1101/cshperspect.a016295

    Article  PubMed  PubMed Central  Google Scholar 

  30. Panther E, Dürk T, Ferrari D et al (2012) AMP affects intracellular Ca2+ signaling, migration, cytokine secretion and T cell priming capacity of dendritic cells. PLoS ONE 7(5):e37560. https://doi.org/10.1371/journal.pone.0037560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jakwerth CA, Ordovas-Montanes J, Blank S et al (2022) Role of respiratory epithelial cells in allergic diseases. Cells 11(9):1387

    Article  CAS  Google Scholar 

  32. Musiol S, Alessandrini F, Jakwerth CA et al (2022) TGF-β1 drives inflammatory Th cell but not Treg Cell compartment upon allergen exposure. Front Immunol. https://doi.org/10.3389/fimmu.2021.763243

    Article  PubMed  PubMed Central  Google Scholar 

  33. Weckmann M, Bahmer T, Sand JM et al (2021) COL4A3 is degraded in allergic asthma and degradation predicts response to anti-IgE therapy. Eur Respir J 58:200396. https://doi.org/10.1183/13993003.03969-2020

    Article  CAS  Google Scholar 

  34. Zissler UM, Jakwerth CA, Guerth F et al (2021) Allergen-specific immunotherapy induces the suppressive secretoglobin 1A1 in cells of the lower airways. Allergy 76(8):2461–2474. https://doi.org/10.1111/all.14756

    Article  CAS  PubMed  Google Scholar 

  35. Liu MC, Bleecker ER, Lichtenstein LM et al (1990) Evidence for elevated levels of histamine, prostaglandin D2, and other bronchoconstricting prostaglandins in the airways of subjects with mild asthma. Am Rev Respir Dis 142(1):126–132. https://doi.org/10.1164/ajrccm/142.1.126

    Article  CAS  PubMed  Google Scholar 

  36. Esther CR Jr, Boysen G et al (2009) Mass spectrometric analysis of biomarkers and dilution markers in exhaled breath condensate reveals elevated purines in asthma and cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 296(6):L987–L993. https://doi.org/10.1152/ajplung.90512.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yamauchi K, Ogasawara M (2019) The Role of histamine in the pathophysiology of asthma and the clinical efficacy of antihistamines in asthma therapy. Int J Mol Sci. https://doi.org/10.3390/ijms20071733

    Article  PubMed  PubMed Central  Google Scholar 

  38. Koarai A, Ichinose M, Ishigaki-Suzuki S et al (2003) Disruption of L-histidine decarboxylase reduces airway eosinophilia but not hyperresponsiveness. Am J Respir Crit Care Med 167(5):758–763. https://doi.org/10.1164/rccm.200206-619OC

    Article  PubMed  Google Scholar 

  39. Matsuda T, Suzuki Y, Fujisawa T et al (2020) Imaging mass spectrometry to visualise increased acetylcholine in lungs of asthma model mice. Anal Bioanal Chem 412(18):4327–4341. https://doi.org/10.1007/s00216-020-02670-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gosens R, Zaagsma J, Meurs H et al (2006) Muscarinic receptor signaling in the pathophysiology of asthma and COPD. Respir Res 7(1):73. https://doi.org/10.1186/1465-9921-7-73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pieper MP (2012) The non-neuronal cholinergic system as novel drug target in the airways. Life Sci 91(21–22):1113–1118. https://doi.org/10.1016/j.lfs.2012.08.030

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Ms. Michelle Gleeson (Hunter Medical Research Institute, the University of Newcastle, Australia), Ms. Zhi Lin (West China Hospital, Sichuan University, China) for their sputum processing. The authors also thank all the participants for participating in this study.

Funding

This study was supported by the National Natural Science Foundation of China (Grant Nos. 81920108002, 81870027, and 81900026), and 1.3.5 project for disciplines of excellence-Clinical Research Incubation Project, West China Hospital, Sichuan University (Grant No. 2018HXFH016), and Post-Doctor Research Project, West China Hospital, Sichuan University, China (Grant No. 2021HXBH013).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by all authors. The first draft of the manuscript was written by XMF, YL, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wei Min Li or Gang Wang.

Ethics declarations

Conflict of interest

G. Wang reports personal fees from AstraZeneca, GlaxoSmithKline, Novartis, Chiesi; and grants from AstraZeneca outside the submitted work. The rest of the authors declare that they have no relevant conflicts of interest.

Ethical Approval

This study was approved by the Institutional Review Board of West China Hospital, Sichuan University (No. 2014–30).

Consent to Participate

Written informed consent was sought and obtained from all participants before enrollment.

Consent to Publications

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2242 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X.M., Liu, Y., Wang, J. et al. Endogenous Adenosine 5′-Monophosphate, But Not Acetylcholine or Histamine, is Associated with Asthma Control, Quality of Life, and Exacerbations. Lung 200, 579–589 (2022). https://doi.org/10.1007/s00408-022-00570-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-022-00570-x

Keywords

Navigation