Skip to main content
Log in

Connective Tissue Growth Factor Single Nucleotide Polymorphisms in (Familial) Pulmonary Fibrosis and Connective Tissue Disease Associated Interstitial Lung Disease

  • INTERSTITIAL LUNG DISEASE
  • Published:
Lung Aims and scope Submit manuscript

Abstract

Purpose

Connective tissue growth factor (CTGF) is an important mediator in fibrotic disease. Single nucleotide polymorphisms (SNPs) in CTGF have been found to be associated with different fibrotic diseases and CTGF protein was found to be upregulated in lung tissue, bronchoalveolar lavage cells, and plasma of idiopathic pulmonary fibrosis (IPF) patients. We investigated whether genetic variants predispose to sporadic IPF (spIPF), familial pulmonary fibrosis (FPF), and connective tissue disease associated ILD (CTD-ILD).

Methods

In total, 294 patients with spIPF and 294 healthy individuals were genotyped for CTGF rs12526196, rs9402373, rs6918698, and rs9399005. For replication of CTGF rs6918698 findings in pulmonary fibrosis, 128 patients with FPF, 125 with CTD-ILD, and an independent control cohort of 130 individuals were included. Lung tissue of 6 IPF patients was stained for CTGF to assess pulmonary localization.

Results

Of the four SNPs, only the minor allele frequency (MAF) of CTGF rs6918698 deviated between spIPF (MAF 0.41) and controls (MAF 0.47; OR 0.774 (0.615–0.975); p = 0.030). Further comparison of CTGF rs6918698G showed a difference between FPF (MAF 0.33) and controls (MAF 0.48; OR 0.545 (0.382–0.778); p = 0.001), but not with CTD-ILD. CTGF was localized in alveolar and bronchiolar epithelium, alveolar macrophages, myofibroblasts and endothelium and highly expressed in the basal cell layer of sandwich foci.

Conclusion

CTGF rs6918698G associates with spIPF and with FPF, but not with CTD-ILD in a Dutch cohort. CTGF is localized in lung tissue involved in IPF pathogenesis. Further research into the role of this SNP on CTGF expression and fibrogenesis is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, CvM, upon reasonable request.

Code availability

Not applicable

References

  1. Travis WD, Costabel U, Hansell DM et al (2013) An official american thoracic society/european respiratory society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med 188:733–748. https://doi.org/10.1164/rccm.201308-1483ST

    Article  PubMed  PubMed Central  Google Scholar 

  2. Strongman H, Kausar I, Maher TM (2018) Incidence, prevalence, and survival of patients with idiopathic pulmonary fibrosis in the UK. Adv Ther 35:724. https://doi.org/10.1007/S12325-018-0693-1

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kaunisto J, Salomaa E-R, Hodgson U et al (2019) Demographics and survival of patients with idiopathic pulmonary fibrosis in the FinnishIPF registry. ERJ Open Res. https://doi.org/10.1183/23120541.00170-2018

    Article  PubMed  PubMed Central  Google Scholar 

  4. Baumgartner KB, Samet JM, Coultas DB et al (2000) Occupational and environmental risk factors for idiopathic pulmonary fibrosis: a multicenter case-control study. Am J Epidemiol 152:307–315. https://doi.org/10.1093/aje/152.4.307

    Article  CAS  PubMed  Google Scholar 

  5. Seibold M, Wise A, Speer M et al (2011) A common MUC5B promoter polymorphism and pulmonary fibrosis. N Engl J Med. https://doi.org/10.1056/NEJMOA1013660

    Article  PubMed  PubMed Central  Google Scholar 

  6. Juge P-A, Borie R, Kannengiesser C et al (2017) Shared genetic predisposition in rheumatoid arthritis-interstitial lung disease and familial pulmonary fibrosis. Eur Respir J. https://doi.org/10.1183/13993003.02314-2016

    Article  PubMed  Google Scholar 

  7. Juge P-A, Lee JS, Ebstein E et al (2018) MUC5B promoter variant and rheumatoid arthritis with interstitial lung disease. N Engl J Med 379:2209–2219. https://doi.org/10.1056/NEJMoa1801562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kropski JA, Blackwell TS, Loyd JE (2015) The genetic basis of idiopathic pulmonary fibrosis. Eur Respir J 45:1717–1727. https://doi.org/10.1183/09031936.00163814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van der Vis JJ, Snetselaar R, Kazemier KM et al (2016) Effect of Muc5b promoter polymorphism on disease predisposition and survival in idiopathic interstitial pneumonias. Respirology 21:712–717. https://doi.org/10.1111/resp.12728

    Article  PubMed  Google Scholar 

  10. King TE Jr, Bradford WZ, Castro-Bernardini S et al (2014) A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med 370:2083–2092. https://doi.org/10.1056/NEJMoa1402582

    Article  CAS  PubMed  Google Scholar 

  11. Richeldi L, du Bois RM, Raghu G et al (2014) Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med 370:2071–2082. https://doi.org/10.1056/NEJMoa1402584

    Article  CAS  PubMed  Google Scholar 

  12. Richeldi L, Fernández Pérez ER, Costabel U et al (2020) Pamrevlumab, an anti-connective tissue growth factor therapy, for idiopathic pulmonary fibrosis (PRAISE): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Respir Med 8:25–33. https://doi.org/10.1016/S2213-2600(19)30262-0

    Article  CAS  PubMed  Google Scholar 

  13. Bornstein P, Sage EH (2002) Matricellular proteins: extracellular modulators of cell function. Curr Opin Cell Biol 14:608–616. https://doi.org/10.1016/S0955-0674(02)00361-7

    Article  CAS  PubMed  Google Scholar 

  14. Shi-Wen X, Leask A, Abraham D (2008) Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis. Cytokine Growth Factor Rev 19:133–144. https://doi.org/10.1016/j.cytogfr.2008.01.002

    Article  CAS  PubMed  Google Scholar 

  15. Leask A, Abraham DJ (2006) All in the CCN family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci 119:4803–4810. https://doi.org/10.1242/jcs.03270

    Article  CAS  PubMed  Google Scholar 

  16. Chen CC, Lau LF (2009) Functions and mechanisms of action of CCN matricellular proteins. Int J Biochem Cell Biol 41:771–783. https://doi.org/10.1016/j.biocel.2008.07.025

    Article  CAS  PubMed  Google Scholar 

  17. Lipson KE, Wong C, Teng Y, Spong S (2012) CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis Tissue Repair. https://doi.org/10.1186/1755-1536-5-s1-s24

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bonniaud P, Martin G, Margetts PJ et al (2004) Connective tissue growth factor is crucial to inducing a profibrotic environment in “fibrosis-resistant” BALB/c mouse lungs. Am J Respir Cell Mol Biol 31:510–516. https://doi.org/10.1165/rcmb.2004-0158OC

    Article  CAS  PubMed  Google Scholar 

  19. Allen JT, Knight RA, Bloor CA, Spiteri MA (1999) Enhanced insulin-like growth factor binding protein-related protein 2 (connective tissue growth factor) expression in patients with idiopathic pulmonary fibrosis and pulmonary sarcoidosis. Am J Respir Cell Mol Biol 21:693–700. https://doi.org/10.1165/ajrcmb.21.6.3719

    Article  CAS  PubMed  Google Scholar 

  20. Kono M, Nakamura Y, Suda T et al (2011) Plasma CCN2 (connective tissue growth factor; CTGF) is a potential biomarker in idiopathic pulmonary fibrosis (IPF). Clinica Chimica Acta; Int J Clin Chem 412:2211–2215. https://doi.org/10.1016/j.cca.2011.08.008

  21. Pan LH, Yamauchi K, Uzuki M et al (2001) Type II alveolar epithelial cells and interstitial fibroblasts express connective tissue growth factor in IPF. Eur Respir J 17:1220–1227. https://doi.org/10.1183/09031936.01.00074101

    Article  CAS  PubMed  Google Scholar 

  22. Fonseca C, Lindahl GE, Ponticos M et al (2007) A polymorphism in the CTGF promoter region associated with systemic sclerosis. N Engl J Med 357:1210–1220. https://doi.org/10.1056/NEJMoa067655

    Article  CAS  PubMed  Google Scholar 

  23. Kawaguchi Y, Ota Y, Kawamoto M et al (2009) Association study of a polymorphism of the CTGF gene and susceptibility to systemic sclerosis in the Japanese population. Ann Rheum Dis 68:1921–1924. https://doi.org/10.1136/ard.2008.100586

    Article  CAS  PubMed  Google Scholar 

  24. Zhang X, Nie S, Si X et al (2012) Association between the CTGF -945C/G polymorphism and systemic sclerosis: a meta-analysis. Gene 509:1–6. https://doi.org/10.1016/j.gene.2012.07.061

    Article  CAS  PubMed  Google Scholar 

  25. Granel B, Argiro L, Hachulla E et al (2010) Association between a CTGF gene polymorphism and systemic sclerosis in a French population. J Rheumatol 37:351–358. https://doi.org/10.3899/jrheum.090290

    Article  CAS  PubMed  Google Scholar 

  26. Dessein A, Chevillard C, Arnaud V et al (2009) Variants of CTGF are associated with hepatic fibrosis in Chinese, Sudanese, and Brazilians infected with Schistosomes. J Exp Med 206:2321–2328. https://doi.org/10.1084/jem.20090383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Raghu G, Collard HR, Egan JJ et al (2011) An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 183:788–824. https://doi.org/10.1164/rccm.2009-040GL

    Article  PubMed  PubMed Central  Google Scholar 

  28. Walsh SLF, Lederer DJ, Ryerson CJ et al (2019) Diagnostic likelihood thresholds that define a working diagnosis of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 200:1146–1153. https://doi.org/10.1164/rccm.201903-0493OC

    Article  PubMed  Google Scholar 

  29. Sgalla G, Lo Greco E, Calvello M et al (2020) Disease progression across the spectrum of idiopathic pulmonary fibrosis: a multicentre study. Respirology. https://doi.org/10.1111/resp.13805

    Article  PubMed  Google Scholar 

  30. Grotendorst GR, Okochi H, Hayashi N (1996) A novel transforming growth factor beta response element controls the expression of the connective tissue growth factor gene. Cell Growth Differen 7:469–480

    CAS  Google Scholar 

  31. Falke LL, Dendooven A, Leeuwis JW et al (2012) Hemizygous deletion of CTGF/CCN2 does not suffice to prevent fibrosis of the severely injured kidney. Matrix Biol 31:421–431. https://doi.org/10.1016/j.matbio.2012.06.002

    Article  CAS  PubMed  Google Scholar 

  32. Vanstapel A, Goldschmeding R, Broekhuizen R et al (2021) Connective tissue growth factor is overexpressed in explant lung tissue and broncho-alveolar lavage in transplant-related pulmonary fibrosis. Front Immunol 12:661761. https://doi.org/10.3389/fimmu.2021.661761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rueda B, Simeon C, Hesselstrand R et al (2009) A large multicentre analysis of CTGF -945 promoter polymorphism does not confirm association with systemic sclerosis susceptibility or phenotype. Ann Rheum Dis 68:1618–1620. https://doi.org/10.1136/ard.2008.100180

    Article  CAS  PubMed  Google Scholar 

  34. Gourh P, Mayes MD, Arnett FC (2008) CTGF Polymorphism Associated with Systemic Sclerosis. N Engl J Med 358:308–309. https://doi.org/10.1056/NEJMc072958

    Article  CAS  PubMed  Google Scholar 

  35. Louthrenoo W, Kasitanon N, Wichainun R et al (2011) Lack of CTGF*-945C/G dimorphism in thai patients with systemic sclerosis. Open Rheumatol J 5:59–63. https://doi.org/10.2174/1874312901105010059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kovalenko E, Tacke F, Gressner OA et al (2009) Validation of connective tissue growth factor (CTGF/CCN2) and its gene polymorphisms as noninvasive biomarkers for the assessment of liver fibrosis. J Viral Hepatitis 16:612–620. https://doi.org/10.1111/j.1365-2893.2009.01110.x

    Article  CAS  Google Scholar 

  37. Herzog EL, Mathur A, Tager AM et al (2014) Review: interstitial lung disease associated with systemic sclerosis and idiopathic pulmonary fibrosis: how similar and distinct? Arthritis Rheumatol 66:1967–1978. https://doi.org/10.1002/art.38702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Platenburg MGJP, Wiertz IA, van der Vis JJ et al (2020) The MUC5B promoter risk allele for idiopathic pulmonary fibrosis predisposes to asbestosis. Eur Respir J. https://doi.org/10.1183/13993003.02361-2019

    Article  PubMed  Google Scholar 

  39. Peljto AL, Steele MP, Fingerlin TE et al (2012) The pulmonary fibrosis-associated MUC5B promoter polymorphism does not influence the development of interstitial pneumonia in systemic sclerosis. Chest 142:1584–1588. https://doi.org/10.1378/chest.12-0110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Borie R, Crestani B, Dieude P et al (2013) The MUC5B variant is associated with idiopathic pulmonary fibrosis but not with systemic sclerosis interstitial lung disease in the European Caucasian population. PLoS ONE 8:e70621. https://doi.org/10.1371/journal.pone.0070621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stock CJ, Sato H, Fonseca C et al (2013) Mucin 5B promoter polymorphism is associated with idiopathic pulmonary fibrosis but not with development of lung fibrosis in systemic sclerosis or sarcoidosis. Thorax 68:436–441. https://doi.org/10.1136/thoraxjnl-2012-201786

    Article  PubMed  Google Scholar 

  42. Bryant AJ, Carrick RP, McConaha ME et al (2016) Endothelial HIF signaling regulates pulmonary fibrosis-associated pulmonary hypertension. Am J Physiol-Lung Cell Mol Physiol 310:L249–L262. https://doi.org/10.1152/ajplung.00258.2015

    Article  PubMed  Google Scholar 

  43. Ning W, Li C-J, Kaminski N et al (2004) Comprehensive gene expression profiles reveal pathways related to the pathogenesis of chronic obstructive pulmonary disease. Proc Natl Acad Sci USA 101:14895–14900. https://doi.org/10.1073/pnas.0401168101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jang J-H, Chand HS, Bruse S et al (2017) Connective tissue growth factor promotes pulmonary epithelial cell senescence and is associated with COPD severity. COPD 14:228–237. https://doi.org/10.1080/15412555.2016.1262340

    Article  PubMed  Google Scholar 

  45. Nishioka M, Ogawa E, Kinose D et al (2010) Lipopolysaccharide induced connective tissue growth factor gene expression in human bronchial epithelial cells. Respirology 15:669–676. https://doi.org/10.1111/j.1440-1843.2010.01742.x

    Article  PubMed  Google Scholar 

  46. Chilosi M, Zamò A, Doglioni C et al (2006) Migratory marker expression in fibroblast foci of idiopathic pulmonary fibrosis. Respir Res 7:95. https://doi.org/10.1186/1465-9921-7-95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by ZonMW-TopZorg St Antonius Science Corner grant (Topzorg Grant, Number 842002001) and Prof. Dr. Jaap Swierenga foundation.

Author information

Authors and Affiliations

Authors

Contributions

DK and CHMM devised the project. DK wrote the manuscript and performed the analyses. SMR and JJV performed the experiments. TQN helped with the selection and annotation of figures. CHMM supervised the project. All authors commented on previous versions of the manuscript and approved the final manuscript.

Corresponding author

Correspondence to Coline H. M. van Moorsel.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by Medical research Ethics Committees United (MEC-U) of the St Antonius hospital (R05-08A).

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klay, D., van der Vis, J.J., Roothaan, S.M. et al. Connective Tissue Growth Factor Single Nucleotide Polymorphisms in (Familial) Pulmonary Fibrosis and Connective Tissue Disease Associated Interstitial Lung Disease. Lung 199, 659–666 (2021). https://doi.org/10.1007/s00408-021-00494-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-021-00494-y

Keywords

Navigation