Skip to main content

P2X3-Receptor Antagonists as Potential Antitussives: Summary of Current Clinical Trials in Chronic Cough

Abstract

Cough is among the most common complaints for which patients worldwide seek medical attention. In a majority of patients with chronic cough (defined as cough of greater than 8 weeks’ duration), successful management results from a thorough evaluation and treatment of underlying causes. In a subgroup of patients, however, cough proves refractory to therapeutic trials aimed at known reversible causes of chronic cough. Such patients are appropriately termed as having refractory chronic cough. At present, safe and effective medications are lacking for this challenging patient population. Currently available therapeutic options are usually ineffective or achieve antitussive effect at the expense of intolerable side effects, typically sedation. Fortunately, the past decade has witnessed great progress in elucidating underlying mechanisms of cough. From that knowledge, aided by the development of validated instruments to measure objective and subjective cough-related end points, numerous antitussive drug development programs have emerged. The most active area of inquiry at present involves antagonists of the purinergic P2X receptors. Indeed, four clinical programs (one in Phase 3 and three in Phase 2) are currently underway investigating antagonists of receptors comprised entirely or partially of the P2X3 subunit as potential antitussive medications. Herein we review the foundation on which P2X receptor antagonists were developed as potential antitussive medications and provide an update on current clinical trials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Hsiao C-J, Cherry DK, Beatty PC et al (2010) National ambulatory medical care survey: 2007 summary. Natl Health Stat Report 27:1–32

    Google Scholar 

  2. 2.

    Dicpinigaitis PV, Morice AH, Birring SS et al (2014) Antitussive drugs—past, present, and future. Pharmacol Rev 66:468–512

    CAS  PubMed  Google Scholar 

  3. 3.

    Irwin RS, French CL, Chang AB et al (2018) Classification of cough as a symptom in adults and management algorithms: chest guideline and expert panel report. Chest 153:196–209

    PubMed  Google Scholar 

  4. 4.

    Morice AH, Millqvist E, Bieksiene K et al (2020) ERS guidelines on the diagnosis and treatment of chronic cough in adults and children. Eur Respir J. https://doi.org/10.1183/13993003.01136-2019

    Article  PubMed  Google Scholar 

  5. 5.

    Morice AH, Millqvist E, Belvisi MG et al (2014) Expert opinion on the cough hypersensitivity syndrome in respiratory medicine. Eur Respir J 44:1132–1148

    PubMed  Google Scholar 

  6. 6.

    Morice AH, Menon MS, Mulrennan SA et al (2007) Opiate therapy in chronic cough. Am J Respir Crit Care Med 175:312–315

    CAS  PubMed  Google Scholar 

  7. 7.

    Ryan MA, Cohen SM (2016) Long-term follow-up of amitriptyline treatment for idiopathic cough. Laryngoscope 126:2758–2763

    CAS  PubMed  Google Scholar 

  8. 8.

    Ryan NM, Birring SS, Gibson PG (2012) Gabapentin for refractory chronic cough: a randomised, double-blind, placebo-controlled trial. Lancet 380:1583–1589

    CAS  PubMed  Google Scholar 

  9. 9.

    Vertigan AE, Kapela SL, Ryan NM et al (2016) Pregabalin and speech pathology combination therapy for refractory chronic cough: a randomized controlled trial. Chest 149:639–648

    PubMed  Google Scholar 

  10. 10.

    Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24(3):509–581

    CAS  PubMed  Google Scholar 

  11. 11.

    Dalziel HH, Westfall DP (1994) Receptors for adenine nucleotides and nucleosides: subclassification, distribution, and molecular characterization. Pharmacol Rev 46(4):449–466

    CAS  PubMed  Google Scholar 

  12. 12.

    Fredholm BB, Abbracchio MP, Burnstock G, Daly JW, Harden TK, Jacobson KA, Leff P, Williams M (1994) Nomenclature and classification of purinoceptors. Pharmacol Rev 46(2):143–156

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Bleehen T, Keele CA (1977) Observations on the algogenic actions of adenosine compounds on the human blister base preparation. Pain 3(4):367–377

    CAS  PubMed  Google Scholar 

  14. 14.

    Haskell CM, Wong M, Williams A, Lee LY (1996) Phase I trial of extracellular adenosine 5'-triphosphate in patients with advanced cancer. Med Pediatr Oncol 27(3):165–173

    CAS  PubMed  Google Scholar 

  15. 15.

    Basoglu OK, Pelleg A, Essilfie-Quaye S, Brindicci C, Barnes PJ, Kharitonov SA (2005) Effects of aerosolized adenosine 5'-triphosphate vs adenosine 5'-monophosphate on dyspnea and airway caliber in healthy nonsmokers and patients with asthma. Chest 128(4):1905–1909

    CAS  PubMed  Google Scholar 

  16. 16.

    Lee WC, Chiang PH, Tain YL, Wu CC, Chuang YC (2012) Sensory dysfunction of bladder mucosa and bladder oversensitivity in a rat model of metabolic syndrome. PLoS ONE 7(9):e45578

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Basoglu OK, Barnes PJ, Kharitonov SA, Pelleg A (2015) Effects of aerosolized Adenosine 5'-Triphosphate in smokers and patients with COPD. Chest 148(2):430–435

    PubMed  Google Scholar 

  18. 18.

    Smith JA, Kitt M, Butera P, Ford A (2016) The effect of P2X3 antagonism (AF-219) on experimentally evoked cough in healthy volunteers and chronic cough patients. Thorax 71(Suppl 3):A17

    Google Scholar 

  19. 19.

    Fowles HE, Rowland T, Wright C, Morice A (2017) Tussive challenge with ATP and AMP: does it reveal cough hypersensitivity? Eur Respir J 49(2):1601452

    PubMed  Google Scholar 

  20. 20.

    Morice AH, Kitt MM, Ford AP, Tershakovec AM, Wu WC, Brindle K, Thompson R, Thackray-Nocera S, Wright C (2019) The effect of gefapixant, a P2X3 antagonist, on cough reflex sensitivity: a randomised placebo-controlled study. Eur Respir J 54(1):1900439

    CAS  PubMed  Google Scholar 

  21. 21.

    Lambrecht G (2000) Agonists and antagonists acting at P2X receptors: selectivity profiles and functional implications. Naunyn Schmiedebergs Arch Pharmacol 362(4–5):340–350

    CAS  PubMed  Google Scholar 

  22. 22.

    Kumahashi N, Naitou K, Nishi H, Oae K, Watanabe Y, Kuwata S, Ochi M, Ikeda M, Uchio Y (2011) Correlation of changes in pain intensity with synovial fluid adenosine triphosphate levels after treatment of patients with osteoarthritis of the knee with high-molecular-weight hyaluronic acid. Knee 18(3):160–164

    PubMed  Google Scholar 

  23. 23.

    Ferguson DR, Kennedy I, Burton TJ (1997) ATP is released from rabbit urinary bladder epithelial cells by hydrostatic pressure changes–a possible sensory mechanism? J Physiol 505(Pt 2):503–511

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Vlaskovska M, Kasakov L, Rong W, Bodin P, Bardini M, Cockayne DA, Ford AP, Burnstock G (2001) P2X3 knock-out mice reveal a major sensory role for urothelially released ATP. J Neurosci 21(15):5670–5677

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Lommatzsch M, Cicko S, Müller T, Lucattelli M, Bratke K, Stoll P, Grimm M, Dürk T, Zissel G, Ferrari D, Di Virgilio F, Sorichter S, Lungarella G, Virchow JC, Idzko M (2010) Extracellular adenosine triphosphate and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 181(9):928–934

    CAS  PubMed  Google Scholar 

  26. 26.

    Huang YJ, Maruyama Y, Dvoryanchikov G, Pereira E, Chaudhari N, Roper SD (2007) The role of pannexin 1 hemichannels in ATP release and cell-cell communication in mouse taste buds. Proc Natl Acad Sci USA 104(15):6436–6441

    CAS  PubMed  Google Scholar 

  27. 27.

    Birder L, Kullmann FA, Lee H, Barrick S, de Groat W, Kanai A, Caterina M (2007) Activation of urothelial transient receptor potential vanilloid 4 by 4alpha-phorbol 12,13-didecanoate contributes to altered bladder reflexes in the rat. J Pharmacol Exp Ther 323(1):227–235

    CAS  PubMed  Google Scholar 

  28. 28.

    Gevaert T, Vriens J, Segal A, Everaerts W, Roskams T, Talavera K, Owsianik G, Liedtke W, Daelemans D, Dewachter I, Van Leuven F, Voets T, De Ridder D, Nilius B (2007) Deletion of the transient receptor potential cation channel TRPV4 impairs murine bladder voiding. J Clin Invest 117(11):3453–3462

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Seminario-Vidal L, Okada SF, Sesma JI, Kreda SM, van Heusden CA, Zhu Y, Jones LC, O'Neal WK, Penuela S, Laird DW, Boucher RC, Lazarowski ER (2011) Rho signaling regulates pannexin 1-mediated ATP release from airway epithelia. J Biol Chem 286(30):26277–26286

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Xia J, Lim JC, Lu W, Beckel JM, Macarak EJ, Laties AM, Mitchell CH (2012) Neurons respond directly to mechanical deformation with pannexin-mediated ATP release and autostimulation of P2X7 receptors. J Physiol 590(10):2285–2304

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Pinheiro AR, Paramos-de-Carvalho D, Certal M, Costa MA, Costa C, Magalhães-Cardoso MT, Ferreirinha F, Sévigny J, Correia-de-Sá P (2013) Histamine induces ATP release from human subcutaneous fibroblasts, via pannexin-1 hemichannels, leading to Ca2+ mobilization and cell proliferation. J Biol Chem 288(38):27571–27583

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Kennedy C (2015) ATP as a cotransmitter in the autonomic nervous system. Auton Neurosci 191:2–15

    CAS  PubMed  Google Scholar 

  33. 33.

    Yamamoto K, Sokabe T, Ohura N, Nakatsuka H, Kamiya A, Ando J (2003) Endogenously released ATP mediates shear stress-induced Ca2+ influx into pulmonary artery endothelial cells. Am J Physiol 285(2):H793–H803

    CAS  Google Scholar 

  34. 34.

    Tarran R, Button B, Boucher RC (2006) Regulation of normal and cystic fibrosis airway surface liquid volume by phasic shear stress. Annu Rev Physiol 68:543–561

    CAS  PubMed  Google Scholar 

  35. 35.

    Weigand LA, Ford AP, Undem BJ (2012) A role for ATP in bronchoconstriction-induced activation of guinea pig vagal intrapulmonary C-fibres. J Physiol 590(16):4109–4120

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Zimmermann H, Zebisch M, Sträter N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8(3):437–502

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Surprenant A, North RA (2009) Signaling at purinergic P2X receptors. Annu Rev Physiol 71:333–359

    CAS  PubMed  Google Scholar 

  38. 38.

    Brake AJ, Wagenbach MJ, Julius D (1994) New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 371(6497):519–523

    CAS  PubMed  Google Scholar 

  39. 39.

    Cockayne DA, Hamilton SG, Zhu QM, Dunn PM, Zhong Y, Novakovic S, Malmberg AB, Cain G, Berson A, Kassotakis L, Hedley L, Lachnit WG, Burnstock G, McMahon SB, Ford AP (2000) Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature 407(6807):1011–1015

    CAS  PubMed  Google Scholar 

  40. 40.

    Kwong K, Kollarik M, Nassenstein C, Ru F, Undem BJ (2008) P2X2 receptors differentiate placodal vs. neural crest C-fiber phenotypes innervating guinea pig lungs and esophagus. Am J Physiol 295(5):L858–L865

    CAS  Google Scholar 

  41. 41.

    Cockayne DA, Dunn PM, Zhong Y, Rong W, Hamilton SG, Knight GE, Ruan HZ, Ma B, Yip P, Nunn P, McMahon SB, Burnstock G, Ford AP (2005) P2X2 knockout mice and P2X2/P2X3 double knockout mice reveal a role for the P2X2 receptor subunit in mediating multiple sensory effects of ATP. J Physiol 567(Pt 2):621–639

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Finger TE, Danilova V, Barrows J, Bartel DL, Vigers AJ, Stone L, Hellekant G, Kinnamon SC (2005) ATP signaling is crucial for communication from taste buds to gustatory nerves. Science 310(5753):1495–1499

    CAS  PubMed  Google Scholar 

  43. 43.

    Pelleg A, Hurt CM (1996) Mechanism of action of ATP on canine pulmonary vagal C fibre nerve terminals. J Physiol 490(Pt 1):265–275

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Kwong K, Hong JL, Morton RF, Lee LY (1998) Role of pulmonary C fibers in adenosine-induced respiratory inhibition in anesthetized rats. J Appl Physiol 84(2):417–424

    CAS  PubMed  Google Scholar 

  45. 45.

    Burki NK, Dale WJ, Lee LY (2005) Intravenous adenosine and dyspnea in humans. J Appl Physiol 98(1):180–185

    CAS  PubMed  Google Scholar 

  46. 46.

    Chou YL, Mori N, Canning BJ (2018) Opposing effects of bronchopulmonary C-fiber subtypes on cough in guinea pigs. Am J Physiol 314(3):R489–R498

    Google Scholar 

  47. 47.

    Chuaychoo B, Lee MG, Kollarik M, Pullmann R Jr, Undem BJ (2006) Evidence for both adenosine A1 and A2A receptors activating single vagal sensory C-fibres in guinea pig lungs. J Physiol 575(Pt 2):481–490

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Undem BJ, Chuaychoo B, Lee MG, Weinreich D, Myers AC, Kollarik M (2004) Subtypes of vagal afferent C-fibres in guinea-pig lungs. J Physiol 556(Pt 3):905–917

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Nassenstein C, Taylor-Clark TE, Myers AC, Ru F, Nandigama R, Bettner W, Undem BJ (2010) Phenotypic distinctions between neural crest and placodal derived vagal C-fibres in mouse lungs. J Physiol 588(Pt 23):4769–4783

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Wang J, Kollarik M, Ru F, Sun H, McNeil B, Dong X, Stephens G, Korolevich S, Brohawn P, Kolbeck R, Undem B (2017) Distinct and common expression of receptors for inflammatory mediators in vagal nodose versus jugular capsaicin-sensitive/TRPV1-positive neurons detected by low input RNA sequencing. PLoS ONE 12(10):e0185985

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Kollarik M, Ru F, Undem BJ (2019) Phenotypic distinctions between the nodose and jugular TRPV1-positive vagal sensory neurons in the cynomolgus monkey. NeuroReport 30(8):533–537

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Canning BJ, Mazzone SB, Meeker SN, Mori N, Reynolds SM, Undem BJ (2004) Identification of the tracheal and laryngeal afferent neurones mediating cough in anaesthetized guinea-pigs. J Physiol 557(Pt 2):543–558

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Muroi Y, Ru F, Chou YL, Carr MJ, Undem BJ, Canning BJ (2013) Selective inhibition of vagal afferent nerve pathways regulating cough using Nav 1.7 shRNA silencing in guinea pig nodose ganglia. Am J Physiol 304(11):R1017–R1023

    CAS  Google Scholar 

  54. 54.

    Kamei J, Takahashi Y, Yoshikawa Y, Saitoh A (2005) Involvement of P2X receptor subtypes in ATP-induced enhancement of the cough reflex sensitivity. Eur J Pharmacol 528(1–3):158–161

    CAS  PubMed  Google Scholar 

  55. 55.

    Kamei J, Takahashi Y (2006) Involvement of ionotropic purinergic receptors in the histamine-induced enhancement of the cough reflex sensitivity in guinea pigs. Eur J Pharmacol 547(1–3):160–164

    CAS  PubMed  Google Scholar 

  56. 56.

    Garceau D, Chauret N (2019) BLU-5937: a selective P2X3 antagonist with potent anti-tussive effect and no taste alteration. Pulm Pharmacol Ther 56:56–62

    CAS  PubMed  Google Scholar 

  57. 57.

    Abdulqawi R, Dockry R, Holt K et al (2015) P2X3 receptor antagonist (AF-219) in refractory chronic cough: a randomised, double-blind, placebo-controlled phase-2 study. Lancet 385:1198–1205

    CAS  PubMed  Google Scholar 

  58. 58.

    Smith JA, Kitt MM, Morice AH, Birring SS, McGarvey LP, Sher MR, Li YP, Wu WC, Xu ZJ, Muccino DR, Ford AP, Protocol 012 Investigators (2020) Gefapixant, a P2X3 receptor antagonist, for the treatment of refractory or unexplained chronic cough: a randomised, double-blind, controlled, parallel-group, phase 2b trial. Lancet Respir Med S2213–2600(19):30471

    Google Scholar 

  59. 59.

    Vandenbeuch A, Larson ED, Anderson CB, Smith SA, Ford AP, Finger TE, Kinnamon SC (2015) Postsynaptic P2X3-containing receptors in gustatory nerve fibres mediate responses to all taste qualities in mice. J Physiol 593(5):1113–1125

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Niimi A, Ishihara H, Hida H, et al (2019) Phase 2a randomised, double-blind, placebo-controlled crossover study of a novel P2X3 receptor antagonist S-600918 in patients with refractory cough [abstract] Eur Respir J 54: Suppl 63, RCT452

  61. 61.

    Morice AH, Smith J, McGarvey L et al (2020) Safety and efficacy of BAY 1817080, a P2X3 receptor antagonist, in patients with refractory chronic cough (RCC)[abstract]. Am J Respir Crit Care Med 201:A7648

    Google Scholar 

  62. 62.

    Smith JA, Kitt MM, Butera P et al (2020) Gefapixant in two randomised dose-escalation studies in chronic cough. Eur Respir J. https://doi.org/10.1183/13993003.01615-2019

    Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Muccino D, Morice AH, Birring S et al (2019) Rationale and design of two Phase 3 randomized controlled trials (COUGH-1 and COUGH-2) of gefapixant, a P2X3 receptor antagonist, in refractory and unexplained chronic cough [abstract]. Am J Respir Crit Care Med 199:A4700

    Google Scholar 

  64. 64.

    Birring SS, Prudon B, Aj C et al (2003) Development of a symptom specific health status measure for patients with chronic cough: leicester cough questionnaire (LCQ). Thorax 58:339–343

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Garceau D, Chauret N, Harvey L (2020) Abstracts from the 7th American cough conference. BLU-5937, A highly selective P2X3 homotrimeric receptor antagonist, exhibits excellent pharmacokinetic and safety profile including improved taste safety profile in healthy subjects. Lung 198:35–41

    Google Scholar 

  66. 66.

    Niimi A, Ishihara H, Hida H et al (2020) Phase 2a randomized, double-blind, placebo-controlled, crossover study of a P2X3 receptor antagonist S-600918: effects on health-related quality of life in patients with refractory chronic cough [abstract]. Am J Respir Crit Care Med 201:A7647

    Google Scholar 

  67. 67.

    Eccles R (2020) The powerful placebo effect in cough: relevance to treatment and clinical trials. Lung 198:13–21

    PubMed  Google Scholar 

  68. 68.

    Birrell MA, Belvisi MG, Grace M et al (2009) TRPA1 agonists evoke coughing in guinea pig and human volunteers. Am J Respir Crit Care Med 180:1042–1047

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter V. Dicpinigaitis.

Ethics declarations

Conflict of interest

PVD and LPM have served as consultants for Merck, Bellus Health, Bayer and Shionogi. BJC has served as a consultant for Merck and Bellus Health. LPM has participated as a clinical trialist for Merck, Bellus Health, Bayer and Shionogi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dicpinigaitis, P.V., McGarvey, L.P. & Canning, B.J. P2X3-Receptor Antagonists as Potential Antitussives: Summary of Current Clinical Trials in Chronic Cough. Lung 198, 609–616 (2020). https://doi.org/10.1007/s00408-020-00377-8

Download citation

Keywords

  • Cough
  • Antitussive
  • Purinergic
  • Gefapixant
  • P2X3
  • P2X
  • ATP