Skip to main content

Advertisement

Log in

Mass Spectrometry Analysis of the Exhaled Breath Condensate and Proposal of Dermcidin and S100A9 as Possible Markers for Lung Cancer Prognosis

  • LUNG CANCER
  • Published:
Lung Aims and scope Submit manuscript

Abstract

Introduction

New sampling techniques to analyse lung diseases, such as exhaled breath condensate (EBC), are a breakthrough in research field since they are less invasive and less traumatic for the patients compared to lung biopsies. Nevertheless, there is an increasing need to optimize not only the sampling protocols but the storage and processing of specimens to get accurate results.

Methods

Exhaled breath condensate was sampled employing the ECoScreen device. Concentrated protein was obtained after ultracentrifugation, lyophilization and reversed-phase chromatography. MALDI-time of flight (TOF)/TOF mass spectrometry (MS) was applied to determine the protein profile in EBC. Commercially available ELISA kits were used to detect the selected biomarker in the EBC after MALDI-MS proteins identification.

Results

The obtained EBC volume after two periods of 10 min doubled the amount obtained after 20 min. One hundred peptides were detected by MALDI-MS, and 18 proteins were identified after reversed-phase chromatography concentration. Dermcidin (P81605), S100A9 (P06702) and Cathepsin G (P08311) were selected to be analysed by ELISA. Dermcidin and S100A9 expression were statistically higher in lung cancer versus healthy volunteers. VEGF concentrations decreased, respectively, by 5.94 and 11.42-fold after 1 and 2 years of frozen EBC preservation in parallel with the declined number of proteins identified by MALDI-MS.

Conclusion

Exhaled breath condensate analysis combined with MS technique may become a valuable method for lung cancer screening and Dermcidin and S100A9 may serve as biomarkers for lung cancer diagnosis or prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

EBC:

Exhaled breath condensate

VEGF:

Vascular endothelial growth factor

References

  1. Sidorenko GI, Zborovskii EI, Levina DI (1980) Surface-active properties of the exhaled air condensate (a new method of studying lung function). Ter Arkh 52:65–68

    CAS  PubMed  Google Scholar 

  2. Shibata A, Katsunuma T, Tomikawa M et al (2006) Increased leukotriene E4 in the exhaled breath condensate of children with mild asthma. Chest 130:1718–1722. https://doi.org/10.1378/chest.130.6.1718

    Article  CAS  PubMed  Google Scholar 

  3. Vaughan J, Ngamtrakulpanit L, Pajewski TN et al (2003) Exhaled breath condensate pH is a robust and reproducible assay of airway acidity. Eur Respir J 22:889–894

    Article  CAS  PubMed  Google Scholar 

  4. Montuschi P, Corradi M, Ciabattoni G et al (1999) Increased 8-isoprostane, a marker of oxidative stress, in exhaled condensate of asthma patients. Am J Respir Crit Care Med 160:216–220

    Article  CAS  PubMed  Google Scholar 

  5. Robroeks CM, Rijkers GT, Jobsis Q et al (2010) Increased cytokines, chemokines and soluble adhesion molecules in exhaled breath condensate of asthmatic children. Clin Exp Allergy 40:77–84. https://doi.org/10.1111/j.1365-2222.2009.03397.x

    Article  CAS  PubMed  Google Scholar 

  6. Nunez-Naveira L, Marinas-Pardo LA, Amor-Carro O, Montero-Martinez C (2012) Determination of ELISA reproducibility to detect protein markers in exhaled breath condensate. J Breath Res. https://doi.org/10.1088/1752-7155/6/4/046003

    Article  PubMed  Google Scholar 

  7. Conrad DH, Goyette J, Thomas PS (2008) Proteomics as a method for early detection of cancer: a review of proteomics, exhaled breath condensate, and lung cancer screening. J Gen Intern Med 23(Suppl 1):78–84. https://doi.org/10.1007/s11606-007-0411-1

    Article  PubMed  Google Scholar 

  8. Torre LA, Bray F, Siegel RL et al (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108. https://doi.org/10.3322/caac.21262

    Article  Google Scholar 

  9. Pallis AG, Fennell DA, Szutowicz E et al (2011) Biomarkers of clinical benefit from anti-epidermal growth factor receptor agents in patients with non-small-cell lung cancer. Br J Cancer 105:1–8. https://doi.org/10.1038/bjc.2011.207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dalaveris E, Kerenidi T, Katsabeki-Katsafli A et al (2009) VEGF, TNF-alpha and 8-isoprostane levels in exhaled breath condensate and serum of patients with lung cancer. Lung Cancer 64:219–225. https://doi.org/10.1016/j.lungcan.2008.08.015

    Article  PubMed  Google Scholar 

  11. Bloemen K, Van Den Heuvel R, Govarts E et al (2011) A new approach to study exhaled proteins as potential biomarkers for asthma. Clin Exp Allergy 41:346–356. https://doi.org/10.1111/j.1365-2222.2010.03638.x

    Article  CAS  PubMed  Google Scholar 

  12. Kurova VS, Anaev EC, Kononikhin AS et al (2009) Proteomics of exhaled breath: methodological nuances and pitfalls. Clin Chem Lab Med 47:706–712. https://doi.org/10.1515/CCLM.2009.166

    Article  CAS  PubMed  Google Scholar 

  13. Hoffmann HJ, Tabaksblat LM, Enghild JJ, Dahl R (2008) Human skin keratins are the major proteins in exhaled breath condensate. Eur Respir J 31:380–384. https://doi.org/10.1183/09031936.00059707

    Article  CAS  PubMed  Google Scholar 

  14. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  15. Rabilloud T, Vuillard L, Gilly C, Lawrence JJ (1994) Silver-staining of proteins in polyacrylamide gels: a general overview. Cell Mol Biol 40:57–75

    CAS  PubMed  Google Scholar 

  16. Dwyer TM (2004) Sampling airway surface liquid: non-volatiles in the exhaled breath condensate. Lung 182:241–250

    Article  CAS  PubMed  Google Scholar 

  17. Banks R, Selby P (2003) Clinical proteomics—insights into pathologies and benefits for patients. Lancet 362:415–416. https://doi.org/10.1016/s0140-6736(03)14096-2

    Article  PubMed  Google Scholar 

  18. Mutlu GM, Garey KW, Robbins RA et al (2001) Collection and analysis of exhaled breath condensate in humans. Am J Respir Crit Care Med 164:731–737

    Article  CAS  PubMed  Google Scholar 

  19. Horvath I, Hunt J, Barnes PJ et al (2005) Exhaled breath condensate: methodological recommendations and unresolved questions. Eur Respir J 26:523–548. https://doi.org/10.1183/09031936.05.00029705

    Article  CAS  PubMed  Google Scholar 

  20. Lacombe M, Marie-Desvergne C, Combes F et al (2018) Proteomic characterization of human exhaled breath condensate. J Breath Res 12:021001. https://doi.org/10.1088/1752-7163/aa9e71

    Article  CAS  PubMed  Google Scholar 

  21. López-Sánchez LM, Jurado-Gámez B, Feu-Collado N et al (2017) Exhaled breath condensate biomarkers for the early diagnosis of lung cancer using proteomics. Am J Physiol Cell Mol Physiol 313:L664–L676. https://doi.org/10.1152/ajplung.00119.2017

    Article  Google Scholar 

  22. Mateos J, Pintor-Iglesias A, Fernández-Puente P et al (2014) Cryoconservation of peptide extracts from trypsin digestion of proteins for proteomic analysis in a hospital biobank facility. J Proteome Res 13:1930–1937. https://doi.org/10.1021/pr401046u

    Article  CAS  PubMed  Google Scholar 

  23. Jackson AS, Sandrini A, Campbell C et al (2007) Comparison of biomarkers in exhaled breath condensate and bronchoalveolar lavage. Am J Respir Crit Care Med 175:222–227. https://doi.org/10.1164/rccm.200601-107OC

    Article  CAS  PubMed  Google Scholar 

  24. Cruickshank-Quinn C, Armstrong M, Powell R et al (2017) Determining the presence of asthma-related molecules and salivary contamination in exhaled breath condensate. Respir Res 18:57. https://doi.org/10.1186/s12931-017-0538-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Romero PV, Rodríguez B, Martínez S et al (2006) Analysis of oxidative stress in exhaled breath condensate from patients with severe pulmonary infections. Arch Bronconeumol 42:113–119

    Article  CAS  PubMed  Google Scholar 

  26. Rytilä P, Rehn T, Ilumets H et al (2006) Increased oxidative stress in asymptomatic current chronic smokers and GOLD stage 0 COPD. Respir Res 7:69. https://doi.org/10.1186/1465-9921-7-69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nigro E, Imperlini E, Scudiero O et al (2015) Differentially expressed and activated proteins associated with non small cell lung cancer tissues. Respir Res 16:74. https://doi.org/10.1186/s12931-015-0234-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hmmier A, O’Brien ME, Lynch V et al (2017) Proteomic analysis of bronchoalveolar lavage fluid (BALF) from lung cancer patients using label-free mass spectrometry. BBA Clin 7:97–104. https://doi.org/10.1016/j.bbacli.2017.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hao S, Sun S, Xiao X et al (2016) Selective expression of transthyretin in subtypes of lung cancer. J Mol Histol 47:239–247. https://doi.org/10.1007/s10735-016-9666-3

    Article  CAS  PubMed  Google Scholar 

  30. Chang WC, Huang MS, Yang CJ et al (2010) Dermcidin identification from exhaled air for lung cancer diagnosis. Eur Respir J 35:1182–1185. https://doi.org/10.1183/09031936.00169509

    Article  CAS  PubMed  Google Scholar 

  31. Maksimowicz T, Chyczewska E, Chyczewski L et al (1997) Activity and tissue localization of cathepsin G in non small cell lung cancer. Rocz Akad Med Bialymst 42(Suppl 1):199–216

    PubMed  Google Scholar 

  32. Gregory AD, Hale P, Perlmutter DH, Houghton AM (2012) Clathrin pit-mediated endocytosis of neutrophil elastase and cathepsin G by cancer cells. J Biol Chem 287:35341–35350. https://doi.org/10.1074/jbc.M112.385617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang Q, Lu J-B, Wu B, Hao L-Y (2010) Expression and clinicopathologic significance of proteolysis-inducing factor in non-small-cell lung cancer: an immunohistochemical analysis. Clin Lung Cancer 11:346–351. https://doi.org/10.3816/CLC.2010.n.044

    Article  PubMed  Google Scholar 

  34. Mirza KA, Wyke SM, Tisdale MJ (2011) Attenuation of muscle atrophy by an N-terminal peptide of the receptor for proteolysis-inducing factor (PIF). Br J Cancer 105:83–88. https://doi.org/10.1038/bjc.2011.216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Feng P-H, Lee K-Y, Chang Y-L et al (2012) CD14 (+) S100A9 (+) monocytic myeloid-derived suppressor cells and their clinical relevance in non-small cell lung cancer. Am J Respir Crit Care Med 186:1025–1036. https://doi.org/10.1164/rccm.201204-0636OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang H, Huang Q, Tang T et al (2018) Clinical significance of calcium-binding protein S100A8 and S100A9 expression in non-small cell lung cancer. Thorac Cancer 9:800–804. https://doi.org/10.1111/1759-7714.12649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu Y, Cui J, Tang Y-L et al (2018) Prognostic roles of mRNA expression of S100 in non-small-cell lung cancer. Biomed Res Int 2018:1–11. https://doi.org/10.1155/2018/9815806

    Article  CAS  Google Scholar 

  38. Tian T, Li X, Hua Z et al (2017) S100A1 promotes cell proliferation and migration and is associated with lymph node metastasis in ovarian cancer. Discov Med 23:235–245

    PubMed  Google Scholar 

  39. Lim SY, Yuzhalin AE, Gordon-Weeks AN, Muschel RJ (2016) Tumor-infiltrating monocytes/macrophages promote tumor invasion and migration by upregulating S100A8 and S100A9 expression in cancer cells. Oncogene 35:5735–5745. https://doi.org/10.1038/onc.2016.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Blanco-Calvo for critical reading of the manuscript and also Jesús Mateos-Martín for helping with MALDI-MS processing.

Funding

This research was funded by Xunta de Galicia, INCITE 09 916 360 PR

Author information

Authors and Affiliations

Authors

Contributions

LN-N, LM-P and CM-M designed the study and protocol. LN-N and LM-P drafted the present manuscript and performed the statistical analyses. LN-N performed EBC collection and processing. All authors contributed to the data acquisition, interpretation, and drafting of the analyses, critical review, and final approval of the manuscript.

Corresponding author

Correspondence to Luis Antonio Mariñas-Pardo.

Ethics declarations

Conflict of interest

All authors confirm that they do not have any conflicts of interest associated with this manuscript.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Núñez-Naveira, L., Mariñas-Pardo, L.A. & Montero-Martínez, C. Mass Spectrometry Analysis of the Exhaled Breath Condensate and Proposal of Dermcidin and S100A9 as Possible Markers for Lung Cancer Prognosis. Lung 197, 523–531 (2019). https://doi.org/10.1007/s00408-019-00238-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-019-00238-z

Keywords

Navigation