Advertisement

Lung

, Volume 196, Issue 3, pp 335–342 | Cite as

Alveolar Tidal recruitment/derecruitment and Overdistension During Four Levels of End-Expiratory Pressure with Protective Tidal Volume During Anesthesia in a Murine Lung-Healthy Model

  • Joao Henrique Neves Soares
  • Alysson Roncally Carvalho
  • Bruno Curty Bergamini
  • Maria Alice Kuster Gress
  • Frederico Caetano Jandre
  • Walter Araujo Zin
  • Antonio Giannella-Neto
Respiratory Mechanics

Abstract

Purpose

We compared respiratory mechanics between the positive end-expiratory pressure of minimal respiratory system elastance (PEEPminErs) and three levels of PEEP during low-tidal-volume (6 mL/kg) ventilation in rats.

Methods

Twenty-four rats were anesthetized, paralyzed, and mechanically ventilated. Airway pressure (Paw), flow (F), and volume (V) were fitted by a linear single compartment model (LSCM) Paw(t) = Ers × V(t) + Rrs × F(t) + PEEP or a volume- and flow-dependent SCM (VFDSCM) Paw(t) = (E1 + E2 × V(t)) × V(t) + (K1 + K2 × |F(t)|) × F(t) + PEEP, where Ers and Rrs are respiratory system elastance and resistance, respectively; E1 and E2× V are volume-independent and volume-dependent Ers, respectively; and K1 and K2 × F are flow-independent and flow-dependent Rrs, respectively. Animals were ventilated for 1 h at PEEP 0 cmH2O (ZEEP); PEEPminErs; 2 cmH2O above PEEPminErs (PEEPminErs+2); or 4 cmH2O above PEEPminErs (PEEPminErs+4). Alveolar tidal recruitment/derecruitment and overdistension were assessed by the index %E2 = 100 × [(E2 × VT)/(E1 + |E2| × VT)], and alveolar stability by the slope of Ers(t).

Results

%E2 varied between 0 and 30% at PEEPminErs in most respiratory cycles. Alveolar Tidal recruitment/derecruitment (%E2 < 0) and overdistension (%E2 > 30) were predominant in the absence of PEEP and in PEEP levels higher than PEEPminErs, respectively. The slope of Ers(t) was different from zero in all groups besides PEEPminErs+4.

Conclusions

PEEPminErs presented the best compromise between alveolar tidal recruitment/derecruitment and overdistension, during 1 h of low-VT mechanical ventilation.

Keywords

Alveolar overdistention Tidal recruitment/derecruitment PEEP choice Protective ventilation Anesthesia 

Notes

Funding

This study was supported by grants from the Brazilian Council for Scientific and Technology Development (CNPq)—140047/2008-5.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in this study were in compliance with the “Principles of Laboratory Animal Care” formulated by the National Society for Medical Research and the “Guiding Principles in the Care and Use of Animals” approved by the Council of the American Physiological Society, USA. The present study was approved by the Institutional Animal Care and Use Committee (CEUA CCS, IBCCF-019).

References

  1. 1.
    Hedenstierna G, Edmark L (2005) The effects of anesthesia and muscle paralysis on the respiratory system. Intensive Care Med 31(10):1327–1335.  https://doi.org/10.1007/s00134-005-2761-7 CrossRefPubMedGoogle Scholar
  2. 2.
    Mead J, Takishima T, Leith D (1970) Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 28(5):596–608.  https://doi.org/10.1152/jappl.1970.28.5.596 CrossRefPubMedGoogle Scholar
  3. 3.
    Bregeon F, Roch A, Delpierre S, Ghigo E, Autillo-Touati A, Kajikawa O, Martin TR, Pugin J, Portugal H, Auffray JP, Jammes Y (2002) Conventional mechanical ventilation of healthy lungs induced pro-inflammatory cytokine gene transcription. Respir Physiol Neurobiol 132(2):191–203CrossRefPubMedGoogle Scholar
  4. 4.
    dos Santos CC, Slutsky AS (2006) The contribution of biophysical lung injury to the development of biotrauma. Annu Rev Physiol 68:585–618.  https://doi.org/10.1146/annurev.physiol.68.072304.113443 CrossRefPubMedGoogle Scholar
  5. 5.
    Michelet P, D’Journo XB, Roch A, Doddoli C, Marin V, Papazian L, Decamps I, Bregeon F, Thomas P, Auffray JP (2006) Protective ventilation influences systemic inflammation after esophagectomy: a randomized controlled study. Anesthesiology 105(5):911–919CrossRefPubMedGoogle Scholar
  6. 6.
    Wolthuis EK, Choi G, Dessing MC, Bresser P, Lutter R, Dzoljic M, van der Poll T, Vroom MB, Hollmann M, Schultz MJ (2008) Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents pulmonary inflammation in patients without preexisting lung injury. Anesthesiology 108(1):46–54.  https://doi.org/10.1097/01.anes.0000296068.80921.10 CrossRefPubMedGoogle Scholar
  7. 7.
    Neumann P, Rothen HU, Berglund JE, Valtysson J, Magnusson A, Hedenstierna G (1999) Positive end-expiratory pressure prevents atelectasis during general anaesthesia even in the presence of a high inspired oxygen concentration. Acta Anaesthesiol Scand 43(3):295–301CrossRefPubMedGoogle Scholar
  8. 8.
    Tusman G, Bohm SH, Vazquez de Anda GF, do Campo JL, Lachmann B (1999) ‘Alveolar recruitment strategy’ improves arterial oxygenation during general anaesthesia. Br J Anaesth 82(1):8–13CrossRefPubMedGoogle Scholar
  9. 9.
    D’Antini D, Huhle R, Herrmann J, Sulemanji DS, Oto J, Raimondo P, Mirabella L, Hemmes SNT, Schultz MJ, Pelosi P, Kaczka DW, Vidal Melo MF, Gama de Abreu M, Cinnella G, European Society of A., The PVN (2018) Respiratory system mechanics during low versus high positive end-expiratory pressure in open abdominal surgery: a substudy of PROVHILO randomized controlled trial. Anesth Analg 126(1):143–149.  https://doi.org/10.1213/ANE.0000000000002192 CrossRefPubMedGoogle Scholar
  10. 10.
    Futier E, Constantin JM, Paugam-Burtz C, Pascal J, Eurin M, Neuschwander A, Marret E, Beaussier M, Gutton C, Lefrant JY, Allaouchiche B, Verzilli D, Leone M, De Jong A, Bazin JE, Pereira B, Jaber S, Group IS (2013) A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med 369(5):428–437.  https://doi.org/10.1056/NEJMoa1301082 CrossRefPubMedGoogle Scholar
  11. 11.
    Fernandez-Bustamante A, Hashimoto S, Serpa Neto A, Moine P, Vidal Melo MF, Repine JE (2015) Perioperative lung protective ventilation in obese patients. BMC Anesthesiol 15(1):56.  https://doi.org/10.1186/s12871-015-0032-x CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Carvalho AR, Jandre FC, Pino AV, Bozza FA, Salluh JI, Rodrigues R, Soares JH, Giannella-Neto A (2006) Effects of descending positive end-expiratory pressure on lung mechanics and aeration in healthy anaesthetized piglets. Crit Care 10(4):R122.  https://doi.org/10.1186/cc5030 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Carvalho AR, Spieth PM, Pelosi P, Vidal Melo MF, Koch T, Jandre FC, Giannella-Neto A, de Abreu MG (2008) Ability of dynamic airway pressure curve profile and elastance for positive end-expiratory pressure titration. Intensive Care Med 34(12):2291–2299.  https://doi.org/10.1007/s00134-008-1301-7 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Slutsky AS, Ranieri VM (2013) Ventilator-induced lung injury. N Engl J Med 369(22):2126–2136.  https://doi.org/10.1056/NEJMra1208707 CrossRefPubMedGoogle Scholar
  15. 15.
    Suter PM, Fairley B, Isenberg MD (1975) Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med 292(6):284–289.  https://doi.org/10.1056/NEJM197502062920604 CrossRefPubMedGoogle Scholar
  16. 16.
    Carvalho AR, Jandre FC, Pino AV, Bozza FA, Salluh J, Rodrigues R, Ascoli FO, Giannella-Neto A (2007) Positive end-expiratory pressure at minimal respiratory elastance represents the best compromise between mechanical stress and lung aeration in oleic acid induced lung injury. Crit Care 11(4):R86.  https://doi.org/10.1186/cc6093 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kano SH, Lanteri CJ, Duncan AW, Sly PD (1994) Influence of nonlinearities on estimates of respiratory mechanics using multilinear regression-analysis. J Appl Physiol 77(3):1185–1197CrossRefPubMedGoogle Scholar
  18. 18.
    Bersten AD (1998) Measurement of overinflation by multiple linear regression analysis in patients with acute lung injury. Eur Respir J 12(3):526–532CrossRefPubMedGoogle Scholar
  19. 19.
    Rohrer F (1915) Der Strömungswiderstand in den menschlichen Atemwegen und der Einfluss der unregelmässigen Verzweigung des Bronchialsystems auf den Atmungsverlauf in verschiedenen Lungenbezirken. Pflügers Archiv Eur J Physiol 162(5–5):225–299CrossRefGoogle Scholar
  20. 20.
    Carvalho AR, Pacheco SA, de Souza Rocha PV, Bergamini BC, Paula LF, Jandre FC, Giannella-Neto A (2013) Detection of tidal recruitment/overdistension in lung-healthy mechanically ventilated patients under general anesthesia. Anesth Analg 116(3):677–684.  https://doi.org/10.1213/ANE.0b013e318254230b CrossRefPubMedGoogle Scholar
  21. 21.
    Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6(2):65–70Google Scholar
  22. 22.
    Carvalho AR, Bergamini BC, Carvalho NS, Cagido VR, Neto AC, Jandre FC, Zin WA, Giannella-Neto A (2013) Volume-independent elastance: a useful parameter for open-lung positive end-expiratory pressure adjustment. Anesth Analg 116(3):627–633.  https://doi.org/10.1213/ANE.0b013e31824a95ca CrossRefPubMedGoogle Scholar
  23. 23.
    Stenqvist O (2003) Practical assessment of respiratory mechanics. Br J Anaesth 91(1):92–105CrossRefPubMedGoogle Scholar
  24. 24.
    Brismar B, Hedenstierna G, Lundquist H, Strandberg A, Svensson L, Tokics L (1985) Pulmonary densities during anesthesia with muscular relaxation–a proposal of atelectasis. Anesthesiology 62(4):422–428CrossRefPubMedGoogle Scholar
  25. 25.
    Hedenstierna G (2012) Oxygen and anesthesia: what lung do we deliver to the post-operative ward? Acta Anaesth Scand 56(6):675–685CrossRefPubMedGoogle Scholar
  26. 26.
    Muscedere JG, Mullen JB, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149(5):1327–1334.  https://doi.org/10.1164/ajrccm.149.5.8173774 CrossRefPubMedGoogle Scholar
  27. 27.
    Hauber HP, Karp D, Goldmann T, Vollmer E, Zabel P (2010) Effect of low tidal volume ventilation on lung function and inflammation in mice. BMC Pulm Med 10:21.  https://doi.org/10.1186/1471-2466-10-21 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Jaber S, Coisel Y, Chanques G, Futier E, Constantin JM, Michelet P, Beaussier M, Lefrant JY, Allaouchiche B, Capdevila X, Marret E (2012) A multicentre observational study of intra-operative ventilatory management during general anaesthesia: tidal volumes and relation to body weight. Anaesthesia 67(9):999–1008.  https://doi.org/10.1111/j.1365-2044.2012.07218.x CrossRefPubMedGoogle Scholar
  29. 29.
    Neumann P, Rothen HU, Berglund JE, Valtysson J, Magnusson A, Hedenstierna G (1999) Positive end-expiratory pressure prevents atelectasis during general anaesthesia even in the presence of a high inspired oxygen concentration. Acta Anaesthesiol Scand 43(3):295–301CrossRefPubMedGoogle Scholar
  30. 30.
    Pintado MC, de Pablo R, Trascasa M, Milicua JM, Rogero S, Daguerre M, Cambronero JA, Arribas I, Sanchez-Garcia M (2013) Individualized PEEP setting in subjects with ARDS: a randomized controlled pilot study. Respir Care 58(9):1416–1423.  https://doi.org/10.4187/respcare.02068 CrossRefPubMedGoogle Scholar
  31. 31.
    Amini R, Herrmann J, Kaczka DW (2017) Intratidal overdistention and derecruitment in the injured lung: a simulation study. IEEE Trans Biomed Eng 64(3):681–689.  https://doi.org/10.1109/TBME.2016.2572678 CrossRefPubMedGoogle Scholar
  32. 32.
    Mead J, Collier C (1959) Relation of volume history of lungs to respiratory mechanics in anesthetized dogs. J Appl Physiol 14(5):669–678CrossRefGoogle Scholar
  33. 33.
    Thammanomai A, Hamakawa H, Bartolak-Suki E, Suki B (2013) Combined effects of ventilation mode and positive end-expiratory pressure on mechanics, gas exchange and the epithelium in mice with acute lung injury. PloS ONE 8(1):e53934.  https://doi.org/10.1371/journal.pone.0053934 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Camilo LM, Avila MB, Cruz LF, Ribeiro GC, Spieth PM, Reske AA, Amato M, Giannella-Neto A, Zin WA, Carvalho AR (2014) Positive end-expiratory pressure and variable ventilation in lung-healthy rats under general anesthesia. PloS ONE 9(11):e110817.  https://doi.org/10.1371/journal.pone.0110817 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Pecchiari M, Monaco A, Koutsoukou A, Della Valle P, Gentile G, D’Angelo E (2014) Effects of various modes of mechanical ventilation in normal rats. Anesthesiology 120(4):943–950.  https://doi.org/10.1097/ALN.0000000000000075 CrossRefPubMedGoogle Scholar
  36. 36.
    Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial I, Cavalcanti AB, Suzumura EA, Laranjeira LN, Paisani DM, Damiani LP, Guimaraes HP, Romano ER, Regenga MM, Taniguchi LNT, Teixeira C, Pinheiro de Oliveira R, Machado FR, Diaz-Quijano FA, Filho MSA, Maia IS, Caser EB, Filho WO, Borges MC, Martins PA, Matsui M, Ospina-Tascon GA, Giancursi TS, Giraldo-Ramirez ND, Vieira SRR, Assef M, Hasan MS, Szczeklik W, Rios F, Amato MBP, Berwanger O, Ribeiro de Carvalho CR (2017) Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA 318 (14):1335–1345.  https://doi.org/10.1001/jama.2017.14171 CrossRefGoogle Scholar
  37. 37.
    Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA, Stewart TE, Briel M, Talmor D, Mercat A, Richard JC, Carvalho CR, Brower RG (2015) Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 372(8):747–755.  https://doi.org/10.1056/NEJMsa1410639 CrossRefPubMedGoogle Scholar
  38. 38.
    Neto AS, Hemmes SNT, Barbas CSV, Beiderlinden M, Fernandez-Bustamante A, Futier E, Gajic O, El-Tahan MR, Ghamdi AAA, Günay E, Jaber S, Kokulu S, Kozian A, Licker M, Lin W-Q, Maslow AD, Memtsoudis SG, Miranda DR, Moine P, Ng T, Paparella D, Ranieri VM, Scavonetto F, Schilling T, Selmo G, Severgnini P, Sprung J, Sundar S, Talmor D, Treschan T, Unzueta C, Weingarten TN, Wolthuis EK, Wrigge H, Amato MBP, Costa ELV, de Abreu MG, Pelosi P, Schultz MJ (2016) Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data. Lancet Respir Med 4(4):272–280.  https://doi.org/10.1016/s2213-2600(16)00057-6 CrossRefPubMedGoogle Scholar
  39. 39.
    Jandre FC, Modesto FC, Carvalho AR, Giannella-Neto A (2008) The endotracheal tube biases the estimates of pulmonary recruitment and overdistension. Med Biol Eng Comput 46(1):69–73.  https://doi.org/10.1007/s11517-007-0227-5 CrossRefPubMedGoogle Scholar
  40. 40.
    Webb HH, Tierney DF (1974) Experimental pulmonary-edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 110(5):556–565PubMedGoogle Scholar
  41. 41.
    Kolobow T, Moretti MP, Fumagalli R, Mascheroni D, Prato P, Chen V, Joris M (1987) Severe impairment in lung function induced by high peak airway pressure during mechanical ventilation. An experimental study. Am Rev Respir Dis 135(2):312–315.  https://doi.org/10.1164/arrd.1987.135.2.312 PubMedGoogle Scholar
  42. 42.
    Parker JC, Hernandez LA, Longenecker GL, Peevy K, Johnson W (1990) Lung edema caused by high peak inspiratory pressures in dogs. Role of increased microvascular filtration pressure and permeability. Am Rev Respir Dis 142(2):321–328.  https://doi.org/10.1164/ajrccm/142.2.321 CrossRefPubMedGoogle Scholar
  43. 43.
    Rothen HU, Sporre B, Engberg G, Wegenius G, Hogman M, Hedenstierna G (1995) Influence of gas composition on recurrence of atelectasis after a reexpansion maneuver during general anesthesia. Anesthesiology 82(4):832–842CrossRefPubMedGoogle Scholar
  44. 44.
    Pelosi P, Ravagnan I, Giurati G, Panigada M, Bottino N, Tredici S, Eccher G, Gattinoni L (1999) Positive end-expiratory pressure improves respiratory function in obese but not in normal subjects during anesthesia and paralysis. Anesthesiology 91(5):1221–1231CrossRefPubMedGoogle Scholar
  45. 45.
    Zin WA, Martins MA, Silva PR, Sakae RS, Carvalho AL, Saldiva PH (1989) Effects of abdominal opening on respiratory system mechanics in ventilated rats. J Appl Physiol 66(6):2496–2501.  https://doi.org/10.1152/jappl.1989.66.6.2496 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Joao Henrique Neves Soares
    • 1
    • 2
  • Alysson Roncally Carvalho
    • 1
    • 3
  • Bruno Curty Bergamini
    • 1
  • Maria Alice Kuster Gress
    • 4
  • Frederico Caetano Jandre
    • 1
  • Walter Araujo Zin
    • 3
  • Antonio Giannella-Neto
    • 1
  1. 1.Laboratory of Pulmonary Engineering, Biomedical Engineering Program/COPPEFederal University of Rio de JaneiroRio de JaneiroBrazil
  2. 2.Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary MedicineVirginia TechBlacksburgUSA
  3. 3.Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of BiophysicsFederal University of Rio de JaneiroRio de JaneiroBrazil
  4. 4.Laboratory of Animal Research, Veterinary SchoolFluminense Federal UniversityNiteroiBrazil

Personalised recommendations