Skip to main content

Advertisement

Log in

Decrease in Small Pulmonary Vessels on Chest Computed Tomography in Light Smokers Without COPD: An Early Change, but Correlated with Smoking Index

  • COPD
  • Published:
Lung Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to evaluate the relationship between the amount of smoking and the cross-sectional area (CSA) of small pulmonary vessels in light smokers without a diagnosis of chronic obstructive pulmonary disease (COPD).

Methods

This retrospective study was approved by our institutional review board, which waived the need for informed consent from patients. The study included 34 current smokers without COPD, who were defined as light smokers based on their smoking history (≤25 pack years). The CSA of small pulmonary vessels (<5 mm2 [CSA<5]) was measured on computed tomography (CT) scans, and the percentage of total CSA of the lung (%CSA<5) was calculated. The extent of emphysema was also assessed as the percentage of low attenuation area (%LAA, <−950 Hounsfield units). The correlations of %CSA<5 and %LAA with pack years were determined using the Spearman rank correlation.

Results

There was a significant negative correlation between %CSA<5 and pack years, whereas no significant correlation was found between %LAA and pack years. The correlations between pack years and percent predicted forced expiratory volume in 1 s (FEV1) and FEV1/forced vital capacity were not significant.

Conclusions

The percentage of total CSA of the lung made up of small pulmonary vessels in light smokers without COPD significantly decreases with increasing amount of smoking, in contrast to emphysema measurements. This suggests that small pulmonary vessels might have been injured or might have degenerated because of smoking, and might represent an initial stage in the development of COPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Erhardt L (2009) Cigarette smoking: an undertreated risk factor for cardiovascular disease. Atherosclerosis 205:23–32

    Article  CAS  PubMed  Google Scholar 

  2. Nussbaumer-Ochsner Y, Rabe KF (2011) Systemic manifestations of COPD. Chest 139:165–173

    Article  PubMed  Google Scholar 

  3. Celermajer DS, Sorensen KE, Georgakopoulos D, Bull C, Thomas O, Robinson J et al (1993) Cigarette smoking is associated with dose-related and potentially reversible impairment of endothelium-dependent dilation in healthy young adults. Circulation 88:2149–2155

    Article  CAS  PubMed  Google Scholar 

  4. Celermajer DS, Adams MR, Clarkson P, Robinson J, McCredie R, Donald A et al (1996) Passive smoking and impaired endothelium-dependent arterial dilatation in healthy young adults. N Engl J Med 334:150–154

    Article  CAS  PubMed  Google Scholar 

  5. Lekakis J, Papamichael C, Vemmos C, Nanas J, Kontoyannis D, Stamatelopoulos S et al (1997) Effect of acute cigarette smoking on endothelium-dependent brachial artery dilatation in healthy individuals. Am J Cardiol 79:529–531

    Article  CAS  PubMed  Google Scholar 

  6. Lekakis J, Papamichael C, Vemmos C, Stamatelopoulos K, Voutsas A, Stamatelopoulos S (1998) Effects of acute cigarette smoking on endothelium dependent arterial dilatation in normal subjects. Am J Cardiol 81:1225–1228

    Article  CAS  PubMed  Google Scholar 

  7. Dinh-Xuan AT, Higenbottam TW, Clelland CA, Pepke-Zaba J, Cremona G, Butt AY et al (1991) Impairment of endothelium-dependent pulmonary-artery relaxation in chronic obstructive lung disease. N Engl J Med 324:1539–1547

    Article  CAS  PubMed  Google Scholar 

  8. Matsuoka S, Washko GR, Dransfield MT, Yamashiro T, San Jose Estepar R, Diaz A et al (2010) Quantitative CT measurement of cross-sectional area of small pulmonary vessel in COPD: correlations with emphysema and airflow limitation. Acad Radiol 17:93–99

    Article  PubMed  Google Scholar 

  9. Matsuoka S, Washko GR, Yamashiro T, Estepar RS, Diaz A, Silverman EK et al (2010) Pulmonary hypertension and computed tomography measurement of small pulmonary vessels in severe emphysema. Am J Respir Crit Care Med 181:218–225

    Article  PubMed  Google Scholar 

  10. Matsuoka S, Yamashiro T, Diaz A, Estépar RS, Ross JC, Silverman EK et al (2011) The relationship between small pulmonary vascular alteration and aortic atherosclerosis in chronic obstructive pulmonary disease: quantitative CT analysis. Acad Radiol 18:40–46

    Article  PubMed  Google Scholar 

  11. Matsuoka S, Yamashiro T, Matsushita S, Fujikawa A, Yagihashi K, Kurihara Y et al (2014) Relationship between quantitative CT of pulmonary small vessels and pulmonary perfusion. AJR Am J Roentgenol 202:719–724

    Article  PubMed  Google Scholar 

  12. Matsuoka S, Yamashiro T, Matsushita S, Kotoku A, Fujikawa A, Yagihashi K et al (2014) Usefulness of coronal reconstruction CT images for quantitative evaluation of the cross-sectional area of small pulmonary vessels. Acad Radiol 21:1411–1415

    Article  PubMed  Google Scholar 

  13. Scarrow GD (1965) The pulmonary angiogram in chronic bronchitis and emphysema. Proc R Soc Med 58:684–687

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Cordasco EM, Beerel FR, Vance JW, Wende RW, Toffolo RR (1968) Newer aspects of the pulmonary vasculature in chronic lung disease. A comparative study. Angiology 19:399–407

    Article  CAS  PubMed  Google Scholar 

  15. Jacobson G, Turner AF, Balchum OJ, Jung R (1967) Vascular changes in pulmonary emphysema. The radiologic evaluation by selective and peripheral pulmonary wedge angiography. Am J Roentgenol Radium Ther Nucl Med 100:374–396

    Article  CAS  PubMed  Google Scholar 

  16. Price JF, Mowbray PI, Lee AJ, Rumley A, Lowe GD, Fowkes FG (1999) Relationship between smoking and cardiovascular risk factors in the development of peripheral arterial disease and coronary artery disease: Edinburgh Artery Study. Eur Heart J 20:344–353

    Article  CAS  PubMed  Google Scholar 

  17. Coxson HO, Dirksen A, Edwards LD, Yates JC, Agusti A, Bakke P et al (2013) The presence and progression of emphysema in COPD as determined by CT scanning and biomarker expression: a prospective analysis from the ECLIPSE study. Lancet Respir Med 1:129–136

    Article  PubMed  Google Scholar 

  18. Wright JL, Levy RD, Churg A (2005) Pulmonary hypertension in chronic obstructive pulmonary disease: current theories of pathogenesis and their implications for treatment. Thorax 60:605–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kasahara Y, Tuder RM, Taraseviciene-Stewart L, Le Cras TD, Abman S, Hirth PK et al (2000) Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J Clin Invest 106:1311–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Santos S, Peinado VI, Ramirez J, Morales-Blanhir J, Bastos R, Roca J et al (2003) Enhanced expression of vascular endothelial growth factor in pulmonary arteries of smokers and patients with moderate chronic obstructive pulmonary disease. Am J Respir Crit Care Med 167:1250–1256

    Article  PubMed  Google Scholar 

  21. Barr RG, Mesia-Vela S, Austin JH, Basner RC, Keller BM, Reeves AP et al (2007) Impaired flow-mediated dilation is associated with low pulmonary function and emphysema in ex-smokers: the emphysema and cancer action project (EMCAP) Study. Am J Respir Crit Care Med 176:1200–1207

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kasahara Y, Tuder RM, Cool CD, Lynch DA, Flores SC, Voelkel NF (2001) Endothelial cell death and decreased expression of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 in emphysema. Am J Respir Crit Care Med 163:737–744

    Article  CAS  PubMed  Google Scholar 

  23. Kanazawa H, Asai K, Hirata K, Yoshikawa J (2003) Possible effects of vascular endothelial growth factor in the pathogenesis of chronic obstructive pulmonary disease. Am J Med 114:354–358

    Article  CAS  PubMed  Google Scholar 

  24. Tuder RM, Zhen L, Cho CY, Taraseviciene-Stewart L, Kasahara Y, Salvemini D et al (2003) Oxidative stress and apoptosis interact and cause emphysema due to vascular endothelial growth factor receptor blockade. Am J Respir Cell Mol Biol 29:88–97

    Article  CAS  PubMed  Google Scholar 

  25. Wright JL, Petty T, Thurlbeck WM (1992) Analysis of the structure of the muscular pulmonary arteries in patients with pulmonary hypertension and COPD: national Institutes of Health nocturnal oxygen therapy trial. Lung 170:109–124

    Article  CAS  PubMed  Google Scholar 

  26. Barberà JA, Peinado VI, Santos S (2003) Pulmonary hypertension in chronic obstructive pulmonary disease. Eur Respir J 21:892–905

    Article  PubMed  Google Scholar 

  27. Grydeland TB, Dirksen A, Coxson HO, Pillai SG, Sharma S, Eide GE et al (2009) Quantitative computed tomography: emphysema and airway wall thickness by sex, age and smoking. Eur Respir J 34:858–865

    Article  CAS  PubMed  Google Scholar 

  28. Mohamed Hoesein FA, Zanen P, de Jong PA, van Ginneken B, Boezen HM, Groen HJ et al (2013) Rate of progression of CT-quantified emphysema in male current and ex-smokers: a follow-up study. Respir Res 14:55

    Article  PubMed  PubMed Central  Google Scholar 

  29. Liebow AA (1959) Pulmonary emphysema with special reference to vascular changes. Am Rev Respir Dis 80:67–93

    CAS  PubMed  Google Scholar 

  30. Eriksson S (1965) Studies in alpha 1-antitrypsin deficiency. Acta Med Scand Suppl 432:1–85

    CAS  PubMed  Google Scholar 

  31. Cudkowicz L, Armstrong JB (1953) The bronchial arteries in pulmonary emphysema. Thorax 8:46–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Issaksohn K (1871) Pathologisch-anatomische Verändeerungen der Lungengefässe beim Emphysem. Virchows Arch A Pathol Pathol Anat 53:466–469

    Article  Google Scholar 

  33. Kuschner WG, D’Alessandro A, Wong H, Blanc PD (1996) Dose-dependent cigarette smoking-related inflammatory responses in healthy adults. Eur Respir J 9:1989–1994

    Article  CAS  PubMed  Google Scholar 

  34. Barua RS, Ambrose JA, Eales-Reynolds LJ, DeVoe MC, Zervas JG, Saha DC (2002) Heavy and light cigarette smokers have similar dysfunction of endothelial vasoregulatory activity: an in vivo and in vitro correlation. J Am Coll Cardiol 39:1758–1763

    Article  CAS  PubMed  Google Scholar 

  35. Ciftçi O, Günday M, Calişkan M, Güllü H, Güven A, Müderrisoğlu H (2013) Light cigarette smoking and vascular function. Acta Cardiol 68:255–261

    PubMed  Google Scholar 

  36. Amato M, Frigerio B, Castelnuovo S, Ravani A, Sansaro D, Tremoli E et al (2013) Effects of smoking regular or light cigarettes on brachial artery flow-mediated dilation. Atherosclerosis 228:153–160

    Article  CAS  PubMed  Google Scholar 

  37. Papamichael CM, Aznaouridis KA, Stamatelopoulos KS, Karatzis EN, Protogerou AD, Papaioannou TG et al (2004) Endothelial dysfunction and type of cigarette smoked: the impact of ‘light’ versus regular cigarette smoking. Vasc Med 9:103–105

    Article  PubMed  Google Scholar 

  38. Neunteufl T, Heher S, Kostner K, Mitulovic G, Lehr S, Khoschsorur G et al (2002) Contribution of nicotine to acute endothelial dysfunction in long-term smokers. J Am Coll Cardiol 39:251–256

    Article  CAS  PubMed  Google Scholar 

  39. Higashi T, Mai Y, Noya Y, Horinouchi T, Terada K, Hoshi A et al (2014) A simple and rapid method for standard preparation of gas phase extract of cigarette smoke. PLOS ONE 9:e107856

    Article  PubMed  PubMed Central  Google Scholar 

  40. San Jose Estépar R, Kinney GL, Black-Shinn JL, Bowler RP, Kindlmann GL, Ross JC et al (2013) Computed tomographic measures of pulmonary vascular morphology in smokers and their clinical implications. Am J Respir Crit Care Med 188:231–239

    Article  Google Scholar 

  41. Dupuy PM, Lançon JP, Françoise M, Frostell CG (1995) Inhaled cigarette smoke selectively reverses human hypoxic vasoconstriction. Intensive Care Med 21:941–944

    Article  CAS  PubMed  Google Scholar 

  42. Uejima I, Matsuoka S, Yamashiro T, Yagihashi K, Kurihara Y, Nakajima Y (2011) Quantitative computed tomographic measurement of a cross-sectional area of a small pulmonary vessel in nonsmokers without airflow limitation. Jpn. J Radiol 29:251–255

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Saruya.

Ethics declarations

Conflict of interest

None of the authors have any conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saruya, S., Yamashiro, T., Matsuoka, S. et al. Decrease in Small Pulmonary Vessels on Chest Computed Tomography in Light Smokers Without COPD: An Early Change, but Correlated with Smoking Index. Lung 195, 179–184 (2017). https://doi.org/10.1007/s00408-017-9985-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-017-9985-5

Keywords

Navigation