Skip to main content
Log in

Bronchoconstriction Induces Structural and Functional Airway Alterations in Non-sensitized Rats

  • Published:
Lung Aims and scope Submit manuscript

Abstract

The impact of mechanical forces on pathogenesis of airway remodeling and the functional consequences in asthma remains to be fully established. In the present study, we investigated the effect of repeated bronchoconstriction induced by methacholine (MCh) on airway remodeling and airway hyperresponsiveness (AHR) in rats with or without sensitization to an external allergen. We provide evidence that repeated bronchoconstriction, using MCh, alone induces airway inflammation and remodeling as well as AHR in non-allergen-sensitized rats. Also, we found that the airways are structurally and functionally altered by bronchoconstriction induced by either allergen or MCh in allergen-sensitized animals. This finding provides a new animal model for the development of airway remodeling and AHR in mammals and can be used for studying the complex reciprocal relationship between bronchoconstriction and airway inflammation. Further studies on presented animal models are required to clarify the exact mechanisms underlying airway remodeling due to bronchoconstriction and the functional consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Fahy JV (2001) Remodeling of the airway epithelium in asthma. Am J Respir Crit Care Med 164:S46–S51

    Article  CAS  PubMed  Google Scholar 

  2. Beckett PA, Howarth PH (2003) Pharmacotherapy and airway remodelling in asthma? Thorax 58:163–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Humbles AA, Lloyd CM, McMillan SJ et al (2004) A critical role for eosinophils in allergic airways remodeling. Science 305:1776–1779

    Article  CAS  PubMed  Google Scholar 

  4. Brusasco V, Crimi E, Pellegrino R (1998) Airway hyperresponsiveness in asthma: not just a matter of airway inflammation. Thorax 53:992–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Crimi E, Spanevello A, Neri M et al (1998) Dissociation between airway inflammation and airway hyperresponsiveness in allergic asthma. Am J Respir Crit Care Med 157:4–9

    Article  CAS  PubMed  Google Scholar 

  6. Anderson GP (2008) Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet 372:1107–1119

    Article  PubMed  Google Scholar 

  7. An SS, Bai TR, Bates JH et al (2007) Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma. Eur Respir J 29:834–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Manuyakorn W (2014) Airway remodelling in asthma: role for mechanical forces. Asia Pac Allergy 4:19–24

    Article  PubMed  PubMed Central  Google Scholar 

  9. Park JA, Tschumperlin DJ (2009) Chronic intermittent mechanical stress increases MUC5AC protein expression. Am J Respir Cell Mol Biol 41:459–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Swartz MA, Tschumperlin DJ, Kamm RD et al (2001) Mechanical stress is communicated between different cell types to elicit matrix remodeling. Proc Natl Acad Sci USA 98:6180–6185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wahl M, Eddinger TJ, Hai CM (2004) Sinusoidal length oscillation- and receptor-mediated mRNA expression of myosin isoforms and alpha-SM actin in airway smooth muscle. Am J Physiol Cell Physiol 287:C1697–C1708

    Article  CAS  PubMed  Google Scholar 

  12. Grainge CL, Lau LC, Ward JA et al (2011) Effect of bronchoconstriction on airway remodeling in asthma. N Engl J Med 364:2006–2015

    Article  CAS  PubMed  Google Scholar 

  13. Grainge C, Dennison P, Lau L et al (2014) Asthmatic and normal respiratory epithelial cells respond differently to mechanical apical stress. Am J Respir Crit Care Med 190:477–480

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sapienza S, Du T, Eidelman DH et al (1991) Structural changes in the airways of sensitized Brown Norway rats after antigen challenge. Am Rev Respir Dis 144:423–427

    Article  CAS  PubMed  Google Scholar 

  15. Szema AM, Hamidi SA, Lyubsky S et al (2006) Mice lacking the VIP gene show airway hyperresponsiveness and airway inflammation, partially reversible by VIP. Am J Physiol Lung Cell Mol Physiol 291:L880–L886

    Article  CAS  PubMed  Google Scholar 

  16. Ma JY, Medicherla S, Kerr I et al (2008) Selective p38α mitogen-activated protein kinase inhibitor attenuates lung inflammation and fibrosis in IL-13 transgenic mouse model of asthma. J Asthma Allergy 1:31–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dehghan S, Hesaraki M, Soleimani M et al (2016) Oct4 transcription factor in conjunction with valproic acid accelerates myelin repair in demyelinated optic chiasm in mice. Neuroscience 318:178–189

    Article  CAS  PubMed  Google Scholar 

  18. Gosens R, Grainge C (2015) Bronchoconstriction and airway biology: potential impact and therapeutic opportunities. Chest 147:798–803

    Article  PubMed  Google Scholar 

  19. Evans MJ, Fanucchi MV, Plopper CG et al (2010) Postnatal development of the lamina reticularis in primate airways. Anat Rec 293:947–954

    Article  CAS  Google Scholar 

  20. Park JA, Fredberg JJ, Drazen JM (2015) Putting the squeeze on airway epithelia. Physiology 30:293–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pera T, Zuidhof A, Valadas J et al (2011) Tiotropium inhibits pulmonary inflammation and remodelling in a guinea pig model of COPD. Eur Respir J 38:789–796

    Article  CAS  PubMed  Google Scholar 

  22. Kistemaker LE, Bos ST, Mudde WM et al (2014) Muscarinic M3 receptors contribute to allergen-induced airway remodeling in mice. Am J Respir Cell Mol Biol 50:690–698

    Article  PubMed  Google Scholar 

  23. Undem BJ, Nassenstein C (2009) Airway nerves and dyspnea associated with inflammatory airway disease. Respir Physiol Neurobiol 167:36–44

    Article  PubMed  Google Scholar 

  24. Niimi A, Torrego A, Nicholson AG et al (2005) Nature of airway inflammation and remodeling in chronic cough. J Allergy Clin Immunol 116:565–570

    Article  PubMed  Google Scholar 

  25. Berry M, Morgan A, Shaw DE et al (2007) Pathological features and inhaled corticosteroid response of eosinophilic and non-eosinophilic asthma. Thorax 62:1043–1049

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the Tarbiat Modares University to Mehdi Eslami-Behroozi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Raoufy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All the protocols for the care and use of animals were approved by the “Ethical Committee of Tarbiat Modares University”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eslami-Behroozi, M., Pazhoohan, S., Aref, E. et al. Bronchoconstriction Induces Structural and Functional Airway Alterations in Non-sensitized Rats. Lung 195, 167–171 (2017). https://doi.org/10.1007/s00408-016-9970-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-016-9970-4

Keywords

Navigation