Skip to main content
Log in

Overnight Changes in Lung Function of Obese Patients with Obstructive Sleep Apnoea

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Purpose

Obstructive sleep apnoea (OSA) is a prevalent disorder, characterised by collapse of the upper airways during sleep. The impact of sleep-disordered breathing on pulmonary function indices is however currently not well described. The aim of the study was to evaluate diurnal change in lung function indices in a cohort of patients with OSA and relate pulmonary function changes to disease severity.

Methods

42 patients with OSA and 73 healthy control subjects participated in the study. Asthma and COPD were excluded in all volunteers following a clinical and spirometric assessment. Spirometry was then performed in all subjects in the evening and the morning following a polysomnography study.

Results

There was no difference in evening or morning FEV1 or FVC between patients and control subjects (p > 0.05). Neither FEV1 nor FVC changed in control subjects overnight (p > 0.05). In contrast, FEV1 significantly increased from evening (2.18/1.54–4.46/L) to morning measurement (2.26/1.42–4.63/L) in OSA without any change in FVC. The FEV1 increase in OSA was related to male gender, obesity and the lack of treatment with statins or β-blockers (all p < 0.05). A tendency for a direct correlation was apparent between overnight FEV1 change and RDI (p = 0.05, r = 0.30).

Conclusions

Diurnal variations in spirometric indices occur in patients with OSA and FEV1 appears to increase in subjects with OSA overnight. These changes occur in the absence of change in FVC and are directly related to the severity of OSA. These findings dictate a need to consider time of lung function measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Strollo PJ Jr, Rogers RM (1996) Obstructive sleep apnea. N Engl J Med 334(2):99–104. doi:10.1056/NEJM199601113340207

    Article  PubMed  Google Scholar 

  2. Abdeyrim A, Zhang Y, Li N, Zhao M, Wang Y, Yao X, Keyoumu Y, Yin T (2015) Impact of obstructive sleep apnea on lung volumes and mechanical properties of the respiratory system in overweight and obese individuals. BMC Pulm Med 15:76. doi:10.1186/s12890-015-0063-6

    Article  PubMed  PubMed Central  Google Scholar 

  3. Onal E, Leech JA, Lopata M (1985) Relationship between pulmonary function and sleep-induced respiratory abnormalities. Chest 87(4):437–441

    Article  CAS  PubMed  Google Scholar 

  4. Abdeyrim A, Li N, Shao L, Heizhati M, Wang Y, Yao X, Abulikemu S, Zhang D, Chang G, Yin T, Li C, Meng J, Zhao M, Zhou L, Hong J, Zhang Y (2016) What can impulse oscillometry and pulmonary function testing tell us about obstructive sleep apnea: a case–control observational study? Sleep Breath 20(1):61–68. doi:10.1007/s11325-015-1185-z

    Article  PubMed  Google Scholar 

  5. Owens RL, Malhotra A, Eckert DJ, White DP, Jordan AS (2010) The influence of end-expiratory lung volume on measurements of pharyngeal collapsibility. J Appl Physiol 108(2):445–451. doi:10.1152/japplphysiol.00755.2009

    Article  PubMed  Google Scholar 

  6. Bednarek M, Plywaczewski R, Jonczak L, Zielinski J (2005) There is no relationship between chronic obstructive pulmonary disease and obstructive sleep apnea syndrome: a population study. Respiration 72(2):142–149. doi:10.1159/000084044

    Article  PubMed  Google Scholar 

  7. Teodorescu M, Barnet JH, Hagen EW, Palta M, Young TB, Peppard PE (2015) Association between asthma and risk of developing obstructive sleep apnea. JAMA 313(2):156–164. doi:10.1001/jama.2014.17822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bikov A, Hull JH, Kunos L (2016) Exhaled breath analysis, a simple tool to study the pathophysiology of obstructive sleep apnoea. Sleep Med Rev 27:1–8. doi:10.1016/j.smrv.2015.07.005

    Article  PubMed  Google Scholar 

  9. Kunos L, Bikov A, Lazar Z, Korosi BZ, Benedek P, Losonczy G, Horvath I (2015) Evening and morning exhaled volatile compound patterns are different in obstructive sleep apnoea assessed with electronic nose. Sleep Breath 19(1):247–253. doi:10.1007/s11325-014-1003-z

    Article  PubMed  Google Scholar 

  10. Carpagnano GE, Kharitonov SA, Resta O, Foschino-Barbaro MP, Gramiccioni E, Barnes PJ (2003) 8-Isoprostane, a marker of oxidative stress, is increased in exhaled breath condensate of patients with obstructive sleep apnea after night and is reduced by continuous positive airway pressure therapy. Chest 124(4):1386–1392

    Article  CAS  PubMed  Google Scholar 

  11. Chua AP, Aboussouan LS, Minai OA, Paschke K, Laskowski D, Dweik RA (2013) Long-term continuous positive airway pressure therapy normalizes high exhaled nitric oxide levels in obstructive sleep apnea. J Clin Sleep Med 9(6):529–535. doi:10.5664/jcsm.2740

    PubMed  PubMed Central  Google Scholar 

  12. Olopade CO, Christon JA, Zakkar M, Hua C, Swedler WI, Scheff PA, Rubinstein I (1997) Exhaled pentane and nitric oxide levels in patients with obstructive sleep apnea. Chest 111(6):1500–1504

    Article  CAS  PubMed  Google Scholar 

  13. Narkiewicz K, van de Borne PJ, Montano N, Dyken ME, Phillips BG, Somers VK (1998) Contribution of tonic chemoreflex activation to sympathetic activity and blood pressure in patients with obstructive sleep apnea. Circulation 97(10):943–945

    Article  CAS  PubMed  Google Scholar 

  14. Marrone O, Riccobono L, Salvaggio A, Mirabella A, Bonanno A, Bonsignore MR (1993) Catecholamines and blood pressure in obstructive sleep apnea syndrome. Chest 103(3):722–727

    Article  CAS  PubMed  Google Scholar 

  15. Hakim F, Gozal D, Kheirandish-Gozal L (2012) Sympathetic and catecholaminergic alterations in sleep apnea with particular emphasis on children. Front Neurol 3:7. doi:10.3389/fneur.2012.00007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cabezas GA, Graf PD, Nadel JA (1971) Sympathetic versus parasympathetic nervous regulation of airways in dogs. J Appl Physiol 31(5):651–655

    CAS  PubMed  Google Scholar 

  17. Larsson K (1985) Studies of sympatho-adrenal reactivity and adrenoceptor function in bronchial asthma. Eur J Respir Dis Suppl 141:1–52

    CAS  PubMed  Google Scholar 

  18. Canning BJ (2006) Reflex regulation of airway smooth muscle tone. J Appl Physiol 101(3):971–985. doi:10.1152/japplphysiol.00313.2006

    Article  CAS  PubMed  Google Scholar 

  19. Kushida CA, Littner MR, Morgenthaler T, Alessi CA, Bailey D, Coleman J Jr, Friedman L, Hirshkowitz M, Kapen S, Kramer M, Lee-Chiong T, Loube DL, Owens J, Pancer JP, Wise M (2005) Practice parameters for the indications for polysomnography and related procedures: an update for 2005. Sleep 28(4):499–521

    PubMed  Google Scholar 

  20. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Crapo R, Enright P, van der Grinten CP, Gustafsson P, Jensen R, Johnson DC, MacIntyre N, McKay R, Navajas D, Pedersen OF, Pellegrino R, Viegi G, Wanger J, Force AET (2005) Standardisation of spirometry. Eur Respir J 26(2):319–338. doi:10.1183/09031936.05.00034805

    Article  CAS  PubMed  Google Scholar 

  21. Faria AC, Lopes AJ, Jansen JM, Melo PL (2009) Evaluating the forced oscillation technique in the detection of early smoking-induced respiratory changes. Biomed Eng Online 8:22. doi:10.1186/1475-925X-8-22

    Article  PubMed  PubMed Central  Google Scholar 

  22. Borsboom GJ, van Pelt W, van Houwelingen HC, van Vianen BG, Schouten JP, Quanjer PH (1999) Diurnal variation in lung function in subgroups from two Dutch populations: consequences for longitudinal analysis. Am J Respir Crit Care Med 159(4):1163–1171. doi:10.1164/ajrccm.159.4.9703106

    Article  CAS  PubMed  Google Scholar 

  23. Baruzzi A, Riva R, Cirignotta F, Zucconi M, Cappelli M, Lugaresi E (1991) Atrial natriuretic peptide and catecholamines in obstructive sleep apnea syndrome. Sleep 14(1):83–86

    CAS  PubMed  Google Scholar 

  24. Horner RL, Brooks D, Kozar LF, Tse S, Phillipson EA (1995) Immediate effects of arousal from sleep on cardiac autonomic outflow in the absence of breathing in dogs. J Appl Physiol 79(1):151–162

    CAS  PubMed  Google Scholar 

  25. Somers VK, Dyken ME, Mark AL, Abboud FM (1993) Sympathetic-nerve activity during sleep in normal subjects. N Engl J Med 328(5):303–307. doi:10.1056/nejm199302043280502

    Article  CAS  PubMed  Google Scholar 

  26. Spaak J, Egri ZJ, Kubo T, Yu E, Ando S, Kaneko Y, Usui K, Bradley TD, Floras JS (2005) Muscle sympathetic nerve activity during wakefulness in heart failure patients with and without sleep apnea. Hypertension 46(6):1327–1332. doi:10.1161/01.HYP.0000193497.45200.66

    Article  CAS  PubMed  Google Scholar 

  27. Barnes PJ, Fitzgerald GA, Dollery CT (1982) Circadian variation in adrenergic responses in asthmatic subjects. Clin Sci 62(4):349–354

    Article  CAS  PubMed  Google Scholar 

  28. Kapsimalis F, Kryger MH (2002) Gender and obstructive sleep apnea syndrome, part 2: mechanisms. Sleep 25(5):499–506

    PubMed  Google Scholar 

  29. Shore SA, Fredberg JJ (2005) Obesity, smooth muscle, and airway hyperresponsiveness. J Allergy Clin Immunol 115(5):925–927. doi:10.1016/j.jaci.2005.01.064

    Article  CAS  PubMed  Google Scholar 

  30. Zeki AA, Franzi L, Last J, Kenyon NJ (2009) Simvastatin inhibits airway hyperreactivity: implications for the mevalonate pathway and beyond. Am J Respir Crit Care Med 180(8):731–740. doi:10.1164/rccm.200901-0018OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Callaerts-Vegh Z, Evans KL, Dudekula N, Cuba D, Knoll BJ, Callaerts PF, Giles H, Shardonofsky FR, Bond RA (2004) Effects of acute and chronic administration of beta-adrenoceptor ligands on airway function in a murine model of asthma. Proc Natl Acad Sci USA 101(14):4948–4953. doi:10.1073/pnas.0400452101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hetzel MR, Clark TJ (1980) Comparison of normal and asthmatic circadian rhythms in peak expiratory flow rate. Thorax 35(10):732–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Joos GF, O’Connor B, Anderson SD, Chung F, Cockcroft DW, Dahlen B, DiMaria G, Foresi A, Hargreave FE, Holgate ST, Inman M, Lotvall J, Magnussen H, Polosa R, Postma DS, Riedler J (2003) Indirect airway challenges. Eur Respir J 21(6):1050–1068

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mrs. Monika Banlaky for her assistance in polysomnographic measurements and to Dr. James H Hull for English corrections. The authors are also grateful to Thor Medical and Elektro-Oxigén Inc. for providing spirometers and polysomnographic devices, respectively. Hungarian Respiratory Society provided financial support in the form of funding to David L Tarnoki (2014). This publication was supported by the Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences to Andras Bikov.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andras Bikov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunos, L., Lazar, Z., Martinovszky, F. et al. Overnight Changes in Lung Function of Obese Patients with Obstructive Sleep Apnoea. Lung 195, 127–133 (2017). https://doi.org/10.1007/s00408-016-9957-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-016-9957-1

Keywords

Navigation