Skip to main content

Advertisement

Log in

Polymorphisms in the Pattern Recognition Receptor Mincle Gene (CLEC4E) and Association with Tuberculosis

  • Published:
Lung Aims and scope Submit manuscript

Abstract

The mechanisms involved in interactions between Mycobacterium tuberculosis and host innate immune cells determine outcome. Antigen-presenting cells, including macrophages and dendritic cells, express many pattern recognition receptors to identify pathogen-associated molecular patterns, thereby initiating an immune response. A major mycobacterial virulence factor, trehalose-6′,6-dimycolate, is recognised by the macrophage-inducible C-type lectin, Mincle, which leads to the activation of the Syk-Card9 signalling pathway in macrophages. Mincle is encoded by CLEC4E, and we investigated polymorphisms in this gene to assess its role in tuberculosis susceptibility. Four tagging single nucleotide polymorphisms (SNPs) (rs10841845, rs10841847, rs10841856 and rs4620776) were genotyped using TaqMan® SNP assays in 416 tuberculosis cases and 405 healthy controls. Logistic regression models were used for analysis. No association was detected with any of the SNPs analysed. This research highlights tuberculosis disease complexity where recognition proteins which specifically bind mycobacterial glycolipids cannot be conclusively associated with the disease in genetic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Salie M, Daya M, Lucas LA et al (2015) Association of toll-like receptors with susceptibility to tuberculosis suggests sex-specific effects of TLR8 polymorphisms. Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis 34:221–229. doi:10.1016/j.meegid.2015.07.004

    Article  CAS  Google Scholar 

  2. Ishikawa E, Ishikawa T, Morita YS et al (2009) Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J Exp Med 206:2879–2888. doi:10.1084/jem.20091750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schoenen H, Bodendorfer B, Hitchens K et al (2010) Cutting edge: mincle Is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenate. J Immunol 184:2756–2760. doi:10.4049/jimmunol.0904013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wells CA, Salvage-Jones JA, Li X et al (2008) The macrophage-inducible C-type lectin, mincle, is an essential component of the innate immune response to Candida albicans. J Immunol 180:7404–7413. doi:10.4049/jimmunol.180.11.7404

    Article  CAS  PubMed  Google Scholar 

  5. Yamasaki S, Ishikawa E, Sakuma M et al (2008) Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat Immunol 9:1179–1188. doi:10.1038/ni.1651

    Article  CAS  PubMed  Google Scholar 

  6. Yamasaki S, Matsumoto M, Takeuchi O et al (2009) C-type lectin Mincle is an activating receptor for pathogenic fungus, Malassezia. Proc Natl Acad Sci USA 106:1897–1902. doi:10.1073/pnas.0805177106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Munch Z, Van Lill SWP, Booysen CN et al (2003) Tuberculosis transmission patterns in a high-incidence area: a spatial analysis. Int J Tuberc Lung Dis 7:271–277

    CAS  PubMed  Google Scholar 

  8. Daya M, van der Merwe L, Galal U et al (2013) A Panel of ancestry informative markers for the complex five-way admixed South African coloured population. PLoS One 8:e82224. doi:10.1371/journal.pone.0082224

    Article  PubMed  PubMed Central  Google Scholar 

  9. Daya M, van der Merwe L, van Helden PD et al (2014) The role of ancestry in TB susceptibility of an admixed South African population. Tuberc Edinb Scotl 94:413–420. doi:10.1016/j.tube.2014.03.012

    Article  Google Scholar 

  10. Skol AD, Scott LJ, Abecasis GR, Boehnke M (2006) Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet 38:209–213. doi:10.1038/ng1706

    Article  CAS  PubMed  Google Scholar 

  11. den Boon S, Van Lill SW, Borgdorff MW et al (2007) High prevalence of tuberculosis in previously treated patients, Cape Town, South Africa. Emerg Infect Dis 13:1189–1194. doi:10.3201/eid1308.051327

    Article  Google Scholar 

  12. Daya M, van der Merwe L, van Helden PD et al (2014) Investigating the role of Gene–gene interactions in TB susceptibility. PLoS One 10:e0123970. doi:10.1371/journal.pone.0123970

    Article  PubMed  Google Scholar 

  13. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265. doi:10.1093/bioinformatics/bth457

    Article  CAS  PubMed  Google Scholar 

  14. Warnes G, Leisch F (2005) Package ‘genetics’. https://cran.r-project.org/web/packages/genetics/genetics.pdf. Accessed 17 May 2016

  15. Ostrop J, Jozefowski K, Zimmermann S et al (2015) Contribution of MINCLE–SYK signaling to activation of primary human APCs by mycobacterial cord factor and the novel adjuvant TDB. J Immunol 195:2417–2428. doi:10.4049/jimmunol.1500102

    Article  CAS  PubMed  Google Scholar 

  16. Heitmann L, Schoenen H, Ehlers S et al (2013) Mincle is not essential for controlling Mycobacterium tuberculosis infection. Immunobiology 218:506–516. doi:10.1016/j.imbio.2012.06.005

    Article  CAS  PubMed  Google Scholar 

  17. Thye T, Owusu-Dabo E, Vannberg FO et al (2012) Common variants at 11p13 are associated with susceptibility to tuberculosis. Nat Genet 44:257–259. doi:10.1038/ng.1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Grant AV, Sabri A, Abid A et al (2016) A genome-wide association study of pulmonary tuberculosis in Morocco. Hum Genet 135:299–307. doi:10.1007/s00439-016-1633-2

    Article  CAS  PubMed  Google Scholar 

  19. Curtis J, Luo Y, Zenner HL et al (2015) Susceptibility to tuberculosis is associated with variants in the ASAP1 gene encoding a regulator of dendritic cell migration. Nat Genet 47:523–527. doi:10.1038/ng.3248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu X-Y, Guo J-P, Yin F-R et al (2012) Macrophage-inducible C-type lectin is associated with anti-cyclic citrullinated peptide antibodies-positive rheumatoid arthritis in men. Chin Med J (Engl) 125:3115–3119. doi:10.3760/cma.j.issn.0366-6999.2012.17.027

    CAS  Google Scholar 

  21. Dorhoi A, Desel C, Yeremeev V et al (2010) The adaptor molecule CARD9 is essential for tuberculosis control. J Exp Med 207:777–792. doi:10.1084/jem.20090067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lobato-Pascual A, Saether PC, Fossum S et al (2013) Mincle, the receptor for mycobacterial cord factor, forms a functional receptor complex with MCL and FcεRI-γ. Eur J Immunol 43:3167–3174. doi:10.1002/eji.201343752

    Article  CAS  PubMed  Google Scholar 

  23. Furukawa A, Kamishikiryo J, Mori D et al (2013) Structural analysis for glycolipid recognition by the C-type lectins Mincle and MCL. Proc Natl Acad Sci USA 110:17438–17443. doi:10.1073/pnas.1312649110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Miyake Y, Oh-hora M, Yamasaki S (2015) C-type lectin receptor MCL facilitates Mincle expression and signaling through complex formation. J Immunol 194:5366–5374. doi:10.4049/jimmunol.1402429

    Article  CAS  PubMed  Google Scholar 

  25. Rao V, Fujiwara N, Porcelli SA, Glickman MS (2005) Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule. J Exp Med 201:535–543. doi:10.1084/jem.20041668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank all participants for their collaboration. We thank Michelle Daya for providing analysis scripts. The funding sources had no role in study design, in the collection, analysis and interpretation of data, in the writing of the report, and in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlo Möller.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bowker, N., Salie, M., Schurz, H. et al. Polymorphisms in the Pattern Recognition Receptor Mincle Gene (CLEC4E) and Association with Tuberculosis. Lung 194, 763–767 (2016). https://doi.org/10.1007/s00408-016-9915-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-016-9915-y

Keywords

Navigation