Can Big Data Analyses Help Speed Up the Clinical Development of Mucoactive Drugs for Symptomatic RTIs?


This paper highlights the need for validated models to demonstrate mucoactive drug efficacy in relieving respiratory tract infection (RTI) symptoms and suggests new concepts to further ongoing research. The review is based on the analyses of studies published on mucoactive drug in respiratory diseases, data supporting FDA’s expectorant monograph, and related US consumer use and attitude surveys. The changes in the volume and consistency of respiratory mucus during RTIs may result in ciliary dysfunction, mucus accumulation, and symptoms like cough and chest congestion. Mucoactive drugs can provide relief, but limited choices exist in the US, due to the unavailability of validated clinical models and unequivocal efficacy results. Ongoing developments have not provided definitive solutions, and Big Data analysis techniques may help overcome current clinical research limitations by identifying differentiating disease and patient factors to speed up the development process to substantiate the effectiveness of expectorant/mucoactive drugs in relieving RTI symptoms.

This is a preview of subscription content, access via your institution.


  1. 1.

    Voynow JA, Rubin BK (2009) Mucins, mucus and sputum. Chest 135:505–512

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Eccles R (2005) Understanding the symptoms of the common cold and influenza. Lancet Infect Dis 5:718–725

    Article  PubMed  Google Scholar 

  3. 3.

    Rogers DF (2007) Mucoactive agents for airway mucus hypersecretory diseases. Respir Care 52:1176–1193

    PubMed  Google Scholar 

  4. 4.

    Pauwels RA, Buist AS, Calverley PM, Jenkins CR, Hurd SS, the GOLD Scientific Committee (2001) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop summary. Am J Respir Crit Care Med 163:1256–1276

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Hull JD et al (2013) A survey of the experience and impact of acute upper respiratory tract infections on people in six countries in the 2011/2012 common cold and flu season. Open J Respir Dis 3:175–187

    Article  Google Scholar 

  6. 6.

    Witek TJ, Ramsey DL, Carr AN, Riker DK (2015) The natural history of community-acquired common cold symptoms assesses over 4-years. Rhinology 53:81–88

    PubMed  Google Scholar 

  7. 7.

    Consumer Survey, Reckitt Benckiser, 2014; data on file

  8. 8.

    Blaiss MS, Dicpinigaitis PV, Eccles R, Wingertzahn MA (2015) Consumer attitudes on cough and cold: US (ACHOO) survey results. Curr Med Res Opin 31(8):1527–1538. doi:10.1185/03007995.2014.1002558

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Balsamo R, Lanata L, Egan CG (2010) Mucoactive drugs. Eur Respir Rev 19(116):127–133

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Smith SM, Schroeder K, Fahey T (2012) Over-the-counter (OTC) medications for acute cough in children and adults in ambulatory settings. Cochrane Database Syst Rev 15(8):CD001831. doi:10.1002/14651858.CD001831

    Google Scholar 

  11. 11.

    FDA Final Monograph (1989) Cold, cough, allergy, bronchodilator, and antiasthmatic drug products for over-the-counter human use

  12. 12.

    Cazzola M, Floriani I, Page CP (2010) The therapeutic efficacy of erdosteine in the treatment of chronic obstructive bronchitis: a meta-analysis of individual patient data. Pulm Pharmacol Ther 23:135–144

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Poole P, Black PN (2010) Mucolytic agents for chronic bronchitis or chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2:CD001287

    PubMed  Google Scholar 

  14. 14.

    Cazzola M, Calzetta L, Page C, Jardim J, Chuchalim AG, Rogliani P, Matera MG (2015) Influence of N-acetylcysteine on chronic bronchitis or COPD exacerbations: a meta-analysis. Eur Respir Rev 24:451–461

    Article  PubMed  Google Scholar 

  15. 15.

    Biondi-Zoccai G, Lotrionte M, Landoni G, Modena MG (2011) The rough guide to systematic reviews and meta-analyses. HSR Proc Intensive Care Cardiovasc Anesth 3(3):161–173

    PubMed Central  CAS  PubMed  Google Scholar 

  16. 16.

    Eccles R (2009) Over the counter medicines for colds. In: Eccles R, Weber O (eds) Common cold. Birkenhaeuser Verlag, Basel, pp 261–263

    Google Scholar 

  17. 17.

    Finiguerra M, Morandini G (1982) Clinical Study Report. Guaifenesin vs. placebo in chronic bronchitis. Data on file, Reckitt Benckiser

  18. 18.

    Germouty J, Jirou-Najou JL (1987) Clinical efficacy of ambroxol in the treatment of bronchial stasis. Clinical trial in 120 patients at two different doses. Respiration 51(Suppl 1):37–41

    Article  PubMed  Google Scholar 

  19. 19.

    Ericsson CH, Juhász J, Jönsson E, Mossberg B (1986) Ambroxol therapy in simple chronic bronchitis: effects on subjective symptoms and ventilatory function. Eur J Respir Dis 69:248–255

    CAS  PubMed  Google Scholar 

  20. 20.

    Thomson ML, Pavia D, McNicol MW (1973) A preliminary study of the effect of guaiphenesin on mucociliary clearance from the human lung. Thorax 28:742–747

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  21. 21.

    Stey C, Steurer J, Bachmann S, Medici TC, Tramèr MR (2000) The effect of oral N-acetylcysteine in chronic bronchitis: a quantitative systematic review. Eur Respir J 16:253–262

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Moretti M, Bottrighi P, Dallari R et al (2004) The effect of long-term treatment with erdosteine on chronic obstructive pulmonary disease: The EQUALIFE study. Drugs Exptl Clin Res 30:143–152

    CAS  Google Scholar 

  23. 23.

    Robinson RE, Cummings WB, Deffenbaugh ER (1977) Effectiveness of guaifenesin as an expectorant: a cooperative double-blind study. Curr Ther Res 22(284):96

    Google Scholar 

  24. 24.

    Dicpinigaitis PV, Gayle YE (2003) Effect of guaifenesin on cough reflex sensitivity. Chest 124:2178–2181

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Troullos E, Baird L, Jayawardena S (2014)  Common cold symptoms in children: results of an internet-based surveillance program.  J Med Internet Res 16(6):e144

    PubMed Central  Article  PubMed  Google Scholar 

  26. 26.

    Albrecht HH, Vernon M, Solomon G (2012) Patient-reported outcomes to assess the efficacy of extended-release guaifenesin for the treatment of acute respiratory tract infection symptoms. Respir Res 13:118

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  27. 27.

    Hoffer-Schaefer A, Rozycki HJ, Yopp MA, Rubin BK (2014) Guaifenesin has no effect on sputum volume or sputum properties in adolescents 1 and adults with an acute respiratory tract infection. Respir Care 59(5):631–636

    Article  PubMed  Google Scholar 

  28. 28.

    Sox HC, Goodman SN (2012) The methods of comparative effectiveness research. Annu Rev Public Health 33:425–445

    Article  PubMed  Google Scholar 

  29. 29.

    Patsopoulos NA (2011) A pragmatic view on pragmatic trials. Dialogues Clin Neurosci 13(2):217–224

    PubMed Central  PubMed  Google Scholar 

  30. 30.

    Hamed AA, Wu X, Erickson R, Fandy T (2015) Twitter K-H networks in action: advancing biomedical literature for drug search. J Biomed Inform 56:157–168

    Article  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Helmut H. Albrecht.

Ethics declarations

Conflict of Interest

Dr. Albrecht is currently consulting for Reckitt Benckiser, LLC. Although no support was received for the preparation of this publication, the company has supported a related oral presentation at the American Cough Conference, 2015.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Albrecht, H.H. Can Big Data Analyses Help Speed Up the Clinical Development of Mucoactive Drugs for Symptomatic RTIs?. Lung 194, 31–34 (2016).

Download citation


  • Mucus
  • Cough
  • Mucoactive drugs
  • Guaifenesin
  • Effectiveness
  • Big Data