Skip to main content
Log in

The Effectiveness of Anti-leukotriene Agents in Patients with COPD: A Systemic Review and Meta-analysis

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Background

Anti-leukotriene (anti-LT) agents have been not yet established for effectiveness in patients with chronic obstructive pulmonary disease (COPD). We performed a systematic review and meta-analysis to assess whether anti-LT agents have the responsiveness for COPD patients.

Methods

MEDLINE, EMBASE, Cochrane Central Register, and Korea Med were searched for relevant clinical trials to review.

Results

Seven studies involving 342 patients were finally analyzed. Pooled estimation from three randomized controlled studies did not demonstrate that anti-LT agents increased forced expiratory volume in 1 s [overall effect: 0.09 L, 95 % confidence interval (CI) −0.04 to 0.21; P = 0.17; I 2 = 41.0 %] or forced vital capacity (overall effect: 0.04 L, 95 % CI −0.04 to 0.11; P = 0.64; I 2 = 0.0 %). As for inflammatory markers, anti-LT agents did not affect the level of myeloperoxidase (standardized mean difference, −0.15; 95 % CI −0.65 to 0.36) or LTB4 (standardized mean difference, −0.41; 95 % CI −0.96 to 0.13). They reduced the frequency of dyspnea [relative risk (RR) 0.43; 95 % CI 0.29 to 0.64] and sputum (RR 0.37; 95 % CI 0.22 to 0.63), based on overall estimation from two non-randomized studies. However, our review revealed that there are few well-designed, randomized controlled studies with large sample sizes and long treatment durations.

Conclusion

Although symptomatic improvements were demonstrated in some studies, there is a lack of evidence to support the therapeutic efficacy of anti-LT agents in patients with COPD. Further large-scale, long-term studies are needed to identify predictive factors for COPD patients who may benefit from anti-LT agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Riccioni G, Bucciarelli T, Mancini B et al (2007) Antileukotriene drugs: clinical application, effectiveness and safety. Curr Med Chem 14:1966–1977

    Article  CAS  PubMed  Google Scholar 

  2. Manning PJ, Watson RM, Margolskee DJ et al (1990) Inhibition of exercise-induced bronchoconstriction by MK-571, a potent leukotriene D4-receptor antagonist. N Engl J Med 323:1736–1739. doi:10.1056/NEJM199012203232504

    Article  CAS  PubMed  Google Scholar 

  3. Tohda Y, Nakahara H, Kubo H et al (1999) Effects of ONO-1078 (pranlukast) on cytokine production in peripheral blood mononuclear cells of patients with bronchial asthma. Clin Exp Allergy 29:1532–1536

    Article  CAS  PubMed  Google Scholar 

  4. Peters-Golden M, Henderson WR Jr (2007) Leukotrienes. N Engl J Med 357:1841–1854. doi:10.1056/NEJMra071371

    Article  CAS  PubMed  Google Scholar 

  5. Global Initiative for Asthma (GINA) (2015) GINA Report, Global Strategy for Asthma Management and Prevention. http://www.ginasthma.org/. Accessed 12 Feb 2015

  6. Chung KF, Wenzel SE, Brozek JL et al (2014) International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur Resp J 43:343–373. doi:10.1183/09031936.00202013

    Article  CAS  Google Scholar 

  7. Kennedy-Feitosa E, Pinto RF, Pires KM et al (2014) The influence of 5-lipoxygenase on cigarette smoke-induced emphysema in mice. Biochim Biophys Acta 1840:199–208. doi:10.1016/j.bbagen.2013.09.028

    Article  CAS  PubMed  Google Scholar 

  8. Ikeda G, Miyahara N, Koga H et al (2014) A effect of a cysteinyl leukotriene receptor antagonist on experimental emphysema and asthma combined with emphysema. Am J Respir Cell Mol Biol 50:18–29. doi:10.1165/rcmb.2012-0418OC

    CAS  PubMed  Google Scholar 

  9. Tufvesson E, Ekberg M, Bjermer L (2013) Inflammatory biomarkers in sputum predict COPD exacerbations. Lung 191:413–416. doi:10.1007/s00408-013-9473-5

    Article  CAS  PubMed  Google Scholar 

  10. Drozdovszky O, Barta I, Antus B (2014) Sputum eicosanoid profiling in exacerbations of chronic obstructive pulmonary disease. Respiration 87:408–415. doi:10.1159/000358099

    PubMed  Google Scholar 

  11. Papaiwannou A, Zarogoulidis P, Porpodis K et al (2014) Asthma-chronic obstructive pulmonary disease overlap syndrome (ACOS): current literature review. J Thorac Dis 6:S146–S151. doi:10.3978/j.issn.2072-1439.2014.03.04

    PubMed Central  PubMed  Google Scholar 

  12. Vogelmeier C, Hederer B, Glaab T et al (2011) Tiotropium versus salmeterol for the prevention of exacerbations of COPD. N Engl J Med 364:1093–1103. doi:10.1056/NEJMoa1008378

    Article  CAS  PubMed  Google Scholar 

  13. Kerstjens HA, Engel M, Dahl R et al (2012) Tiotropium in asthma poorly controlled with standard combination therapy. N Engl J Med 367:1198–1207. doi:10.1056/NEJMoa1208606

    Article  CAS  PubMed  Google Scholar 

  14. Lee SW, Kim HJ, Yoo KH et al (2014) Long-acting anticholinergic agents in patients with uncontrolled asthma: a systematic review and meta-analysis. Int J Tuberc Lung Dis 18:1421–1430. doi:10.5588/ijtld.14.0275

    Article  CAS  PubMed  Google Scholar 

  15. Global Initiative for Chronic Obstructive Lung Disease (GOLD) (2015) Global Strategy for the Diagnosis, Management, and Prevention of COPD. http://www.goldcopd.org/. Accessed 12 Feb 2015

  16. Woodruff PG, Albert RK, Bailey WC et al (2011) Randomized trial of zileuton for treatment of COPD exacerbations requiring hospitalization. COPD 8:21–29. doi:10.3109/15412555.2010.540273

    Article  PubMed Central  PubMed  Google Scholar 

  17. Gronke L, Beeh KM, Cameron R et al (2008) Effect of the oral leukotriene B4 receptor antagonist LTB019 on inflammatory sputum markers in patients with chronic obstructive pulmonary disease. Pulm Pharmacol Ther 21:409–417. doi:10.1016/j.pupt.2007.10.007

    Article  CAS  PubMed  Google Scholar 

  18. Celik P, Sakar A, Havlucu Y et al (2005) Short-term effects of montelukast in stable patients with moderate to severe COPD. Respir Med 99:444–450. doi:10.1016/j.rmed.2004.09.008

    Article  PubMed  Google Scholar 

  19. Gompertz S, Stockley RA (2002) A randomized, placebo-controlled trial of a leukotriene synthesis inhibitor in patients with COPD. Chest 122:289–294

    Article  CAS  PubMed  Google Scholar 

  20. Moosavi SA, Raji H, Tasorian B et al (2013) Effect of Zafirlukast on improving lung function in patients with chronic obstructive pulmonary diseases. Med J Islam Repub Iran 27:57–61

    PubMed Central  PubMed  Google Scholar 

  21. Gueli N, Verrusio W, Linguanti A et al (2011) Montelukast therapy and psychological distress in chronic obstructive pulmonary disease (COPD): a preliminary report. Arch Gerontol Geriatr 52:e36–e39. doi:10.1016/j.archger.2010.04.014

    Article  CAS  PubMed  Google Scholar 

  22. Rubinstein I, Kumar B, Schriever C (2004) Long-term montelukast therapy in moderate to severe COPD–a preliminary observation. Respir Med 98:134–138

    Article  PubMed  Google Scholar 

  23. Dempsey OJ, Wilson AM, Sims EJ et al (2000) Additive bronchoprotective and bronchodilator effects with single doses of salmeterol and montelukast in asthmatic patients receiving inhaled corticosteroids. Chest 117:950–953

    Article  CAS  PubMed  Google Scholar 

  24. Zuhlke IE, Kanniess F, Richter K et al (2003) Montelukast attenuates the airway response to hypertonic saline in moderate-to-severe COPD. Eur Respir J 22:926–930

    Article  CAS  PubMed  Google Scholar 

  25. National Asthma Education and Prevention Program (2007) Expert Panel Report 3 (EPR-3): guidelines for the Diagnosis and Management of Asthma-Summary Report 2007. J Allergy Clin Immunol 120:S94–S138. doi:10.1016/j.jaci.2007.09.043

    Article  Google Scholar 

  26. Drakatos P, Lykouras D, Sampsonas F et al (2009) Targeting leukotrienes for the treatment of COPD? Inflamm Allergy Drug Targets 8:297–306

    Article  CAS  PubMed  Google Scholar 

  27. Kostikas K, Gaga M, Papatheodorou G et al (2005) Leukotriene B4 in exhaled breath condensate and sputum supernatant in patients with COPD and asthma. Chest 127:1553–1559. doi:10.1378/chest.127.5.1553

    Article  CAS  PubMed  Google Scholar 

  28. Montuschi P, Kharitonov SA, Ciabattoni G et al (2003) Exhaled leukotrienes and prostaglandins in COPD. Thorax 58:585–588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Biernacki WA, Kharitonov SA, Barnes PJ (2003) Increased leukotriene B4 and 8-isoprostane in exhaled breath condensate of patients with exacerbations of COPD. Thorax 58:294–298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Beeh KM, Kornmann O, Buhl R et al (2003) Neutrophil chemotactic activity of sputum from patients with COPD: role of interleukin 8 and leukotriene B4. Chest 123:1240–1247

    Article  CAS  PubMed  Google Scholar 

  31. Furukawa T, Sakagami T, Koya T et al (2014) Characteristics of eosinophilic and non-eosinophilic asthma during treatment with inhaled corticosteroids. J Asthma. doi:10.3109/02770903.2014.975357

    Google Scholar 

  32. Telenga ED, Kerstjens HA, Ten Hacken NH et al (2013) Inflammation and corticosteroid responsiveness in ex-, current- and never-smoking asthmatics. BMC Pulm Med 13:58. doi:10.1186/1471-2466-13-58

    Article  PubMed Central  PubMed  Google Scholar 

  33. Price D, Popov TA, Bjermer L et al (2013) Effect of montelukast for treatment of asthma in cigarette smokers. J Allergy Clin Immunol 131:763–771. doi:10.1016/j.jaci.2012.12.673

    Article  CAS  PubMed  Google Scholar 

  34. Zhu J, Bandi V, Qiu S, Figueroa DJ et al (2012) Cysteinyl leukotriene 1 receptor expression associated with bronchial inflammation in severe exacerbations of COPD. Chest 142:347–357. doi:10.1378/chest.11-1581

    Article  PubMed Central  PubMed  Google Scholar 

  35. Papi A, Romagnoli M, Baraldo S et al (2000) Partial reversibility of airflow limitation and increased exhaled NO and sputum eosinophilia in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 162:1773–1777. doi:10.1164/ajrccm.162.5.9910112

    Article  CAS  PubMed  Google Scholar 

  36. Fauler J, Frolich JC (1997) Cigarette smoking stimulates cysteinyl leukotriene production in man. Eur J Clin Invest 27:43–47

    Article  CAS  PubMed  Google Scholar 

  37. Hernandez-Alvidrez E, Alba-Reyes G, Munoz-Cedillo BC et al (2013) Passive smoking induces leukotriene production in children: influence of asthma. J Asthma 50:347–353. doi:10.3109/02770903.2013.773009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the research grant from Jeju National University Hospital. Jong Hoo Lee and Yee Hyung Kim planned this study, reviewed trials, collected and analyzed data. Jong Hoo Lee made the first draft of the manuscript. Yee Hyung Kim and Hyun Jung Kim revised the manuscript.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yee Hyung Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.H., Kim, H.J. & Kim, Y.H. The Effectiveness of Anti-leukotriene Agents in Patients with COPD: A Systemic Review and Meta-analysis. Lung 193, 477–486 (2015). https://doi.org/10.1007/s00408-015-9743-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-015-9743-5

Keywords

Navigation