, Volume 193, Issue 1, pp 85–95 | Cite as

Infusion of Mesenchymal Stem Cells Protects Lung Transplants from Cold Ischemia-Reperfusion Injury in Mice

  • Weijun Tian
  • Yi Liu
  • Bai Zhang
  • Xiangchen Dai
  • Guang Li
  • Xiaochun Li
  • Zhixiang Zhang
  • Caigan DuEmail author
  • Hao WangEmail author



Cold ischemia-reperfusion injury (IRI) is a major cause of graft failure in lung transplantation. Despite therapeutic benefits of mesenchymal stem cells (MSCs) in attenuating acute lung injury, their protection of lung transplants from cold IRI remains elusive. The present study was to test the efficacy of MSCs in the prevention of cold IRI using a novel murine model of orthotopic lung transplantation.


Donor lungs from C57BL/6 mice were exposed to 6 h of cold ischemia before transplanted to syngeneic recipients. MSCs were isolated from the bone marrows of C57BL/6 mice for recipient treatment. Gas exchange was determined by the measurement of blood oxygenation, and lung injury and inflammation were assessed by histological analyses.


Intravenously delivered MSC migration/trafficking to the lung grafts occurred within 4-hours post-transplantation. As compared to untreated controls, the graft arterial blood oxygenation (PaO2/FiO2) capacity was significantly improved in MSC-treated recipients as early as 4 h post-reperfusion and such improvement continued over time. By 72 h, oxygenation reached normal level that was not seen in controls. MSCs treatment conferred significant protection of the grafts from cold IRI and cell apoptosis, which is correlated with less cellular infiltration, a decrease in proinflammatory cytokines (TNF-α, IL-6) and toll-like receptor 4, and an increase in anti-inflammatory TSG-6 generation.


MSCs provide significant protection against cold IRI in lung transplants, and thus may be a promising strategy to improve outcomes after lung transplantation.


Mesenchymal stem cells Orthotopic lung transplantation Cold ischemia-reperfusion injury Mice 



Analysis of variance


Enhanced green fluorescence protein


Hematoxylin & eosin


Mesenchymal stem cells




Ischemia-reperfusion injury


Reactive oxygen species


Standard error of mean


Tumor necrosis factor


Toll-like receptor


Tumor necrosis factor-α stimulated gene/protein


Terminal deoxynucleotyl transferase dUTP nick end labeling



We are grateful to Dr. Bertha Garcia at Western University, London, Canada for her critical review of the histological slides, and to Drs. Shuhua Luo and Weihua Liu for their technical assistance. This work was supported by Grant to H.W. from National Natural Science Foundation of China (No. 81273257), and National High Technology Research and Development Program 863 (2012AA021003). C.D. was supported by grants from the Kidney Foundation of Canada and the Canadian Institutes of Health Research.

Conflict of interest

The authors have no conflicts of interest to disclose.


  1. 1.
    Bittner HB, Binner C, Dahlberg P, Mohr FW (2007) Reducing ischemia-reperfusion injury in clinical lung transplantation. Transplant Proc 39(2):489–492. doi: 10.1016/j.transproceed.2006.12.005 PubMedCrossRefGoogle Scholar
  2. 2.
    Fischer S, Cassivi SD, Xavier AM, Cardella JA, Cutz E, Edwards V, Liu M, Keshavjee S (2000) Cell death in human lung transplantation: apoptosis induction in human lungs during ischemia and after transplantation. Ann Surg 231(3):424–431PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    den Hengst WA, Gielis JF, Lin JY, Van Schil PE, De Windt LJ, Moens AL (2010) Lung ischemia-reperfusion injury: a molecular and clinical view on a complex pathophysiological process. Am J Physiol Heart Circ Physiol 299(5):H1283–1299. doi: 10.1152/ajpheart.00251.2010 CrossRefGoogle Scholar
  4. 4.
    Weyker PD, Webb CA, Kiamanesh D, Flynn BC (2013) Lung ischemia reperfusion injury: a bench-to-bedside review. Semin Cardiothorac Vasc Anesth 17(1):28–43. doi: 10.1177/1089253212458329 PubMedCrossRefGoogle Scholar
  5. 5.
    Yip HK, Chang YC, Wallace CG, Chang LT, Tsai TH, Chen YL, Chang HW, Leu S, Zhen YY, Tsai CY, Yeh KH, Sun CK, Yen CH (2013) Melatonin treatment improves adipose-derived mesenchymal stem cell therapy for acute lung ischemia-reperfusion injury. J Pineal Res 54(2):207–221. doi: 10.1111/jpi.12020 PubMedCrossRefGoogle Scholar
  6. 6.
    Souidi N, Stolk M, Seifert M (2013) Ischemia-reperfusion injury: beneficial effects of mesenchymal stromal cells. Curr Opin Organ Transplant 18(1):34–43. doi: 10.1097/MOT.0b013e32835c2a05 PubMedCrossRefGoogle Scholar
  7. 7.
    Manning E, Pham S, Li S, Vazquez-Padron RI, Mathew J, Ruiz P, Salgar SK (2010) Interleukin-10 delivery via mesenchymal stem cells: a novel gene therapy approach to prevent lung ischemia-reperfusion injury. Hum Gene Ther 21(6):713–727. doi: 10.1089/hum.2009.147 PubMedCrossRefGoogle Scholar
  8. 8.
    Svobodova E, Krulova M, Zajicova A, Pokorna K, Prochazkova J, Trosan P, Holan V (2012) The role of mouse mesenchymal stem cells in differentiation of naive T-cells into anti-inflammatory regulatory T-cell or proinflammatory helper T-cell 17 population. Stem Cells Dev 21(6):901–910. doi: 10.1089/scd.2011.0157 PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Dimarino AM, Caplan AI, Bonfield TL (2013) Mesenchymal stem cells in tissue repair. Front Immunol 4:201. doi: 10.3389/fimmu.2013.00201 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    De Miguel MP, Fuentes-Julian S, Blazquez-Martinez A, Pascual CY, Aller MA, Arias J, Arnalich-Montiel F (2012) Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med 12(5):574–591PubMedCrossRefGoogle Scholar
  11. 11.
    Kode JA, Mukherjee S, Joglekar MV, Hardikar AA (2009) Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy 11(4):377–391. doi: 10.1080/14653240903080367 PubMedCrossRefGoogle Scholar
  12. 12.
    Assis AC, Carvalho JL, Jacoby BA, Ferreira RL, Castanheira P, Diniz SO, Cardoso VN, Goes AM, Ferreira AJ (2010) Time-dependent migration of systemically delivered bone marrow mesenchymal stem cells to the infarcted heart. Cell Transplant 19(2):219–230. doi: 10.3727/096368909X479677 PubMedCrossRefGoogle Scholar
  13. 13.
    Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, Semprun-Prieto L, Delafontaine P, Prockop DJ (2009) Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5(1):54–63. doi: 10.1016/j.stem.2009.05.003 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Barbash IM, Chouraqui P, Baron J, Feinberg MS, Etzion S, Tessone A, Miller L, Guetta E, Zipori D, Kedes LH, Kloner RA, Leor J (2003) Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 108(7):863–868. doi: 10.1161/01.CIR.0000084828.50310.6A PubMedCrossRefGoogle Scholar
  15. 15.
    Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H, Savitz SI, Laine GA, Cox CS Jr (2009) Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev 18(5):683–692. doi: 10.1089/scd.2008.0253 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Ge W, Jiang J, Baroja ML, Arp J, Zassoko R, Liu W, Bartholomew A, Garcia B, Wang H (2009) Infusion of mesenchymal stem cells and rapamycin synergize to attenuate alloimmune responses and promote cardiac allograft tolerance. Am J Transplant 9(8):1760–1772. doi: 10.1111/j.1600-6143.2009.02721.x PubMedCrossRefGoogle Scholar
  17. 17.
    Jungraithmayr WM, Korom S, Hillinger S, Weder W (2009) A mouse model of orthotopic, single-lung transplantation. J Thorac Cardiovasc Surg 137(2):486–491. doi: 10.1016/j.jtcvs.2008.10.007 PubMedCrossRefGoogle Scholar
  18. 18.
    Chen S, Chen L, Wu X, Lin J, Fang J, Chen X, Wei S, Xu J, Gao Q, Kang M (2012) Ischemia postconditioning and mesenchymal stem cells engraftment synergistically attenuate ischemia reperfusion-induced lung injury in rats. J Surg Res 178(1):81–91. doi: 10.1016/j.jss.2012.01.039 PubMedCrossRefGoogle Scholar
  19. 19.
    Prakash A, Mesa KR, Wilhelmsen K, Xu F, Dodd-o JM, Hellman J (2012) Alveolar macrophages and Toll-like receptor 4 mediate ventilated lung ischemia reperfusion injury in mice. Anesthesiology 117(4):822–835. doi: 10.1097/ALN.0b013e31826a4ae3 PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Zanotti G, Casiraghi M, Abano JB, Tatreau JR, Sevala M, Berlin H, Smyth S, Funkhouser WK, Burridge K, Randell SH, Egan TM (2009) Novel critical role of Toll-like receptor 4 in lung ischemia-reperfusion injury and edema. Am J Physiol Lung Cell Mol Physiol 297(1):L52–63. doi: 10.1152/ajplung.90406.2008 PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Getting SJ, Mahoney DJ, Cao T, Rugg MS, Fries E, Milner CM, Perretti M, Day AJ (2002) The link module from human TSG-6 inhibits neutrophil migration in a hyaluronan- and inter-alpha -inhibitor-independent manner. J Biol Chem 277(52):51068–51076. doi: 10.1074/jbc.M205121200 PubMedCrossRefGoogle Scholar
  22. 22.
    Choi H, Lee RH, Bazhanov N, Oh JY, Prockop DJ (2011) Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-kappaB signaling in resident macrophages. Blood 118(2):330–338. doi: 10.1182/blood-2010-12-327353 PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Sun CK, Yen CH, Lin YC, Tsai TH, Chang LT, Kao YH, Chua S, Fu M, Ko SF, Leu S, Yip HK (2011) Autologous transplantation of adipose-derived mesenchymal stem cells markedly reduced acute ischemia-reperfusion lung injury in a rodent model. J Transl Med 9:118. doi: 10.1186/1479-5876-9-118 PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Reis A, Giaid A, Serrick C, Shennib H (1995) Improved outcome of rat lung transplantation with modification of the nonsuture external cuff technique. J Heart Lung Transplant 14(2):274–279PubMedGoogle Scholar
  25. 25.
    Okazaki M, Krupnick AS, Kornfeld CG, Lai JM, Ritter JH, Richardson SB, Huang HJ, Das NA, Patterson GA, Gelman AE, Kreisel D (2007) A mouse model of orthotopic vascularized aerated lung transplantation. Am J Transplant 7(6):1672–1679. doi: 10.1111/j.1600-6143.2007.01819.x PubMedCrossRefGoogle Scholar
  26. 26.
    Krupnick AS, Lin X, Li W, Okazaki M, Lai J, Sugimoto S, Richardson SB, Kornfeld CG, Garbow JR, Patterson GA, Gelman AE, Kreisel D (2009) Orthotopic mouse lung transplantation as experimental methodology to study transplant and tumor biology. Nat Protoc 4(1):86–93. doi: 10.1038/nprot.2008.218 PubMedCrossRefGoogle Scholar
  27. 27.
    Sugimoto R, Tanaka Y, Noda K, Kawamura T, Toyoda Y, Billiar TR, McCurry KR, Nakao A (2012) Preservation solution supplemented with biliverdin prevents lung cold ischaemia/reperfusion injury. Eur J Cardiothorac Surg 42(6):1035–1041. doi: 10.1093/ejcts/ezs298 PubMedCrossRefGoogle Scholar
  28. 28.
    Kreisel D, Goldstein DR (2013) Innate immunity and organ transplantation: focus on lung transplantation. Transpl Int 26(1):2–10. doi: 10.1111/j.1432-2277.2012.01549.x PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Diamond JM, Wigfield CH (2013) Role of innate immunity in primary graft dysfunction after lung transplantation. Curr Opin Organ Transplant. doi: 10.1097/MOT.0b013e3283651994 PubMedGoogle Scholar
  30. 30.
    Kaczorowski DJ, Nakao A, Mollen KP, Vallabhaneni R, Sugimoto R, Kohmoto J, Tobita K, Zuckerbraun BS, McCurry KR, Murase N, Billiar TR (2007) Toll-like receptor 4 mediates the early inflammatory response after cold ischemia/reperfusion. Transplantation 84(10):1279–1287. doi: 10.1097/ PubMedCrossRefGoogle Scholar
  31. 31.
    Ben DF, Yu XY, Ji GY, Zheng DY, Lv KY, Ma B, Xia ZF (2012) TLR4 mediates lung injury and inflammation in intestinal ischemia-reperfusion. J Surg Res 174(2):326–333. doi: 10.1016/j.jss.2010.12.005 PubMedCrossRefGoogle Scholar
  32. 32.
    Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8(9):726–736. doi: 10.1038/nri2395 PubMedCrossRefGoogle Scholar
  33. 33.
    Kinnaird T, Stabile E, Burnett MS, Lee CW, Barr S, Fuchs S, Epstein SE (2004) Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 94(5):678–685. doi: 10.1161/01.RES.0000118601.37875.AC PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Weijun Tian
    • 1
  • Yi Liu
    • 2
  • Bai Zhang
    • 1
  • Xiangchen Dai
    • 1
  • Guang Li
    • 2
  • Xiaochun Li
    • 3
  • Zhixiang Zhang
    • 1
    • 4
  • Caigan Du
    • 5
    • 6
    Email author
  • Hao Wang
    • 1
    • 4
    Email author
  1. 1.Department of General SurgeryTianjin Medical University General HospitalTianjinChina
  2. 2.Department of BiologyTianjin Medical UniversityTianjinChina
  3. 3.Department of CardiologyTianjin Medical University General HospitalTianjinChina
  4. 4.Tianjin General Surgery InstituteTianjinChina
  5. 5.Immunity and Infection Research CentreVancouver Coastal Health Research InstituteVancouverCanada
  6. 6.Department of Urologic SciencesThe University of British Columbia, VGH-Jack Bell Research CentreVancouverCanada

Personalised recommendations