Skip to main content

Advertisement

Log in

A Review of Recent Findings About Stress-Relaxation in the Respiratory System Tissues

  • Published:
Lung Aims and scope Submit manuscript

Abstract

This article reviews the state of the art about an unclear physiological phenomenon interesting respiratory system tissues, i.e., stress-relaxation. Due to their visco-elastic properties, the tissues do not maintain constant stress under constant deformation. Rather, the stress slowly relaxes and falls to a lower value. The exact molecular basis of this complex visco-elastic behavior is not well defined, but it has been suggested that it may be generated because of the anisotropic mechanical properties of elastin and collagen fibers in the alveolar septa and their interaction phenomena, such as reciprocal sliding, also in relation to interstitial liquid movements. The effects on stress-relaxation of various biochemical and physical factors are reviewed, including the consequences of body temperature variations, respiratory system inflammations and hyperbaric oxygen exposure, endocrinal factors, circulating blood volume variations, changes in inflation volume and/or flow, changes in intra-abdominal pressure because of pneumoperitoneum or Trendelenburg position. The effects of these factors on stress-relaxation have practical consequences because, depending on visco-elastic pressure amount which is requested to inflate the respiratory system in different conditions, respiratory muscles have to produce different values of inspiratory pressure during spontaneous breathing. High inspiratory pressure values might increase the risk of respiratory failure development on mechanical basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. D’Angelo E, Calderini E, Torri G, Robatto FM, Bono D, Milic-Emili J (1989) Respiratory mechanics in anesthetized paralyzed humans: effects of flow, volume, and time. J Appl Physiol 67:2556–2564

    PubMed  Google Scholar 

  2. Bates JH, Rossi A, Milic-Emili J (1985) Analysis of the behaviour of the respiratory system with constant inspiratory flow. J Appl Physiol 58:1840–1848

    CAS  PubMed  Google Scholar 

  3. Eissa NT, Ranieri VM, Corbeil C, Chassè M, Robatto FM, Nava S, Braidy J, Milic-Emili J (1991) Analysis of behaviour of respiratory system in ARDS patients: effects of flow, volume and time. J Appl Physiol 70:2719–2729

    Article  CAS  PubMed  Google Scholar 

  4. Tantucci C, Corbeil C, Chassè M, Robatto FM, Nava S, Braidy J, Matar N, Milic-Emili J (1992) Flow and volume dependance of respiratory system flow resistance in patients with adult respiratory distress syndrome. Am Rev Respir Dis 145:355–360

    Article  CAS  PubMed  Google Scholar 

  5. Guèrin C, Coussa ML, Eissa NT, Corbeil C, Chassè M, Braidy J, Matar N, Milic-Emili J (1993) Lung and chest wall mechanics in mechanically ventilated COPD patients. J Appl Physiol 74:1570–1580

    PubMed  Google Scholar 

  6. Rubini A (2011) The effect of body warming on respiratory mechanics in rat. Respir Physiol Neurobiol 175:255–260

    Article  PubMed  Google Scholar 

  7. Rubini A, El-Mazloum D, Morra F, Bosco G (2013) The effect of body cooling on respiratory system mechanics and hysteresis in rats. Respir Physiol Neurobiol 189:52–58

    Article  PubMed  Google Scholar 

  8. Rubini A (2010) IL-6 increases airway resistance in the rat. Cytokine 51:266–273

    Article  CAS  PubMed  Google Scholar 

  9. Rubini A, Porzionato A, Zara S, Cataldi A, Garetto G, Bosco G (2013) The effect of acute exposure to hyperbaric oxygen on respiratory system mechanics in the rat. Lung 191:459–466

    Article  CAS  PubMed  Google Scholar 

  10. Rubini A, Porzionato A, Sarasin G, Zara S, Macchi V, Camporesi E, Bosco G (2014) Hyperbaric air exposure at 2.5 ATA does not affects respiratory mechanics and lung histology in the rat. Lung 192:609–614

    Article  CAS  PubMed  Google Scholar 

  11. Rubini A, Bondì M (2007) Effect of the oestral cycle on respiratory mechanics in the rat. Acta Physiol (Oxf) 189:379–383

    Article  CAS  Google Scholar 

  12. Rubini A, Morra F, El-Mazloum D (2014) The effects of endothelin on respiratory system hysteresis and mechanics measured by the end-inflation occlusion method in the rat. Minerva Pneumol 53:35–42

    Google Scholar 

  13. Rubini A, Redaelli M, Parmagnani A (2012) The effect of angiotensin converting enzyme inhibition by captopril on respiratory mechanics in healthy rats. J Enzym Inhib Med Chem 27:854–860

    Article  CAS  Google Scholar 

  14. Rubini A, Gasperetti A, Catena V, Del Monte D (2010) Effect of blood volume expansion on respiratory mechanics in the rat. Respiration 79:497–505

    Article  CAS  PubMed  Google Scholar 

  15. Rubini A, Carniel EL, Parmagnani A, Natali A (2011) Flow and volume dependence of rat airway resistance during constant flow inflation and deflation. Lung 189:511–518

    Article  PubMed  Google Scholar 

  16. Rubini A, Carniel EL (2014) The volume dependence of stress relaxation in the rat respiratory system. Exp Lung Res 40:137–143

    Article  PubMed  Google Scholar 

  17. Rubini A, Del Monte D, Catena V (2012) Effects of the pneumoperitoneum and Trendelenburg position on respiratory mechanics in the rats by the end-inflation occlusion method. Ann Thorac Med 7:205–209

    Article  PubMed Central  PubMed  Google Scholar 

  18. Martins MA, Zin WA, Younes RN, Negri EM, Sakae RS, Lin CA, Hoelz C, Auler JOC, Saldiva PHN (1990) Respiratory system mechanics in guinea pigs after acute hemorrhage: role of adrenergic stimulation. Crit Care Med 18:515–519

    Article  CAS  PubMed  Google Scholar 

  19. Kochi T, Okubo S, Zin WA, Milic-Emili J (1988) Flow and volume dependance of pulmonary mechanics in anesthetized cats. J Appl Physiol 64:441–450

    CAS  PubMed  Google Scholar 

  20. Pèrez Fontàn JJ (1993) Effect of lung lavage on the stress relaxation of the respiratory system. J Appl Physiol 75:1536–1544

    PubMed  Google Scholar 

  21. Fredberg JJ, Stamenovic D (1989) On the imperfect elasticity of lung tissue. J Appl Physiol 67:2408–2419

    CAS  PubMed  Google Scholar 

  22. Hantos Z, Daroczy B, Suki B, Nagy S, Fredberg JJ (1992) Input impedance and peripheral inhomogeneity of dog lungs. J Appl Physiol 72:168–178

    Article  CAS  PubMed  Google Scholar 

  23. Jensen A, Atileh H, Suki B, Ingenito EP, Lutchen KR (2001) Airway caliber in healthy and asthmatic subjects: effects of bronchial challenge and deep inspirations. J Appl Physiol 91:506–515

    CAS  PubMed  Google Scholar 

  24. Fredberg JJ, Dunk D, Ingenito E, Shore SA (1993) Tissue resistance and the contractile state of lung parenchima. J Appl Physiol 74:1387–1397

    CAS  PubMed  Google Scholar 

  25. Navajas D, Maksym GN, Bates JH (1995) Dynamic viscoelastic nonlinearity of lung parenchymal tissue. J Appl Physiol 79:348–356

    CAS  PubMed  Google Scholar 

  26. Ingenito EP, Mark L, Davison B (1994) Effects of acute lung injury on dynamic tissue properties. J Appl Physiol 77:2689–2697

    CAS  PubMed  Google Scholar 

  27. Tanaka R, Ludwig MS (1999) Changes in viscoelastic properties of rat lung parenchymal strips with maturation. J Appl Physiol 87:2081–2089

    CAS  PubMed  Google Scholar 

  28. Yuan H, Konov S, Cavalcante FSA, Lutchen KR, Ingenito EP, Suki B (2000) Effects of collagenase and elastase on the mechanical properties of lung tissue strips. J Appl Physiol 89:3–14

    CAS  PubMed  Google Scholar 

  29. Romero PV, Zin WA, Lopez-Aguilar J (2001) Frequency characteristics of lung tissue strip during passive stretch and induced pneumoconstriction. J Appl Physiol 91:882–890

    CAS  PubMed  Google Scholar 

  30. Romero PV, Faffe DS, Canete C (2011) Dynamic nonlinearity of lung tissue: frequency dependence and harmonic distortion. J Appl Physiol 111:420–426

    Article  PubMed  Google Scholar 

  31. Suki B, Barabasi AL, Lutchen KR (1994) Lung tissue viscoelasticity: a mathematical framework and its molecular basis. J Appl Physiol 76:2749–2759

    CAS  PubMed  Google Scholar 

  32. Faffe DS, Zin WA (2009) Lung parenchymal mechanics in health and disease. Physiol Rev 89:759–775

    Article  CAS  PubMed  Google Scholar 

  33. Bates JH, Hunter IW, Sly PD, Okubo S, Filiatrault S, Milic-Emili J (1987) Effect of valve closure time on the determination of respiratory resistance by flow interruption. Med Biol Eng Comput 25:136–140

    Article  CAS  PubMed  Google Scholar 

  34. Bates JHT, Maksym GH, Navajas D, Suki B (1994) Lung tissue rheology and i/f noise. Ann Biomed Eng 22:674–681

    Article  CAS  PubMed  Google Scholar 

  35. Lempert J, Macklem PT (1971) Effect of temperature on rabbit lung surfactant and pressure-volume hysteresis. J Appl Physiol 31:380–385

    CAS  PubMed  Google Scholar 

  36. Sharp JT, Hammond MD (1991) Pressure-volume relationships. In: Crystal RG, West TB (eds) The lung: scientific foundations, vol 2. Raven Press, New York, pp 839–854

    Google Scholar 

  37. Chen SS, Humphrey JD (1998) Heat-induced changes in the mechanics of a collagenous tissue: pseudoelastic behaviour at 37 degrees & #xB0;C. J Biomech 31:211–216

    Article  CAS  PubMed  Google Scholar 

  38. Weinberg PD, Winlove CP, Parker KH (1995) The distribution of water in arterial elastin: effects of mechanical stress, osmotic pressure, and temperature. Biopolymers 35:161–169

    Article  CAS  PubMed  Google Scholar 

  39. Peiper U (1984) What kind of signals are perceived by vascular smooth muscle, including physical factors? J Cardiovasc Pharmacol 6:S328–S335

    Article  PubMed  Google Scholar 

  40. Mc Fadden ER Jr, Ingram RH Jr (1986) Thermal factors in respiratory mechanics. In: Fishman AP (ed) Handbook of physiology, vol III., Section 3: the respiratory system, Mechanics of breathing, part 2American Physiological Society, Bethesda, pp 703–709

    Google Scholar 

  41. Comley K, Fleck NA (2010) A micromechanical model for the Young’s modulus of adipose tissue. Int J Solids Struct 47:2982–2990

    Article  Google Scholar 

  42. Xisto DG, Farias LL, Ferreira HC, Picanco MR, Amitrano D, Lapa E, Silva JR, Negri EM, Mauad T, Carnielli D, Silva LF, Capelozzi VL, Faffe DS, Zin WA, Rocco PR (2005) Lung parenchyma remodelling in a murine model of chronic allergic inflammation. Am J Respir Crit Care Med 171:829–837

    Article  PubMed  Google Scholar 

  43. Bousquet J, Lacoste JY, Chanez P, Vic P, Godard P, Michel FB (1996) Bronchial elastic fibers in normal subjects and asthmatic patients. Am J Respir Crit Care Med 153:1648–1654

    Article  CAS  PubMed  Google Scholar 

  44. Demoule A, Decailliot F, Jonson B, Christov C, Maitre B, Touqui L, Brochard L, Delclaux C (2006) Relationship between pressure-volume curve and markers for collagen turn-over in early acute respiratory distress syndrome. Int Care Med 32:413–420

    Article  CAS  Google Scholar 

  45. Cavalcante FS, Ito S, Brewer K, Sakai H, Alencar AM, Almeida MP, Andrade JS Jr, Majumdar A, Ingenito EP, Suki B (2005) Mechanical interactions between collagen and proteoglycans:implications for the stability of lung tissue. J Appl Physiol 98:672–679

    Article  CAS  PubMed  Google Scholar 

  46. Ebihara T, Venkatesan N, Tanaka R, Ludwig MS (2000) Changes in extracellular matrix and tissue viscoelasticity in bleomycin-induced lung fibrosis. Temporal aspects. Am J Respir Crit Care Med 162:1569–1576

    Article  CAS  PubMed  Google Scholar 

  47. Saldiva PHN, Parada MA, Macchone M, Paiva GS, Guimares ET, Lorenzi G, Martins MA, Montes GS, Balbani AP, King M (1995) Nasal mucus clearance in rats: differences with sex and phase of the oestrous cycle. J Appl Toxicol 15:289–295

    Article  CAS  PubMed  Google Scholar 

  48. Taner P, Akarsu C, Atasoy P, Bayram M, Ergin A (2004) The effects of hormone replacement therapy on ocular surface and tear function tests in postmenopausal women. Ophthalmologica 218:257–259

    Article  CAS  PubMed  Google Scholar 

  49. Lorino AM, Harf A, Atlan G, Lorino H, Laurent D (1982) Role of surface tension and tissue in rat lung stress relaxation. Respir Physiol 48:143–155

    Article  CAS  PubMed  Google Scholar 

  50. Denny E, Schroter RC (2000) Viscoelastic behavior of a lung alveolar duct model. J Biomech Eng 122:143–151

    Article  CAS  PubMed  Google Scholar 

  51. Freezer NJ, Lanteri CJ, Sly PD (1993) Effect of pulmonary blood flow on measurements of respiratory mechanics using the interrupter technique. J Appl Physiol 74:1083–1088

    Article  CAS  PubMed  Google Scholar 

  52. Petak F, Babik B, Hantos Z, Morel DR, Pache JC, Biton C, Suki B, Habre W (2004) Impact of microvascular circulation on peripheral lung stability. Am J Physiol Lung Cell Mol Physiol 287:L879–L889

    Article  CAS  PubMed  Google Scholar 

  53. Pelosi P, Foti G, Cereda M, Vicardi P, Gattinoni L (1996) Effects of carbon dioxide insufflation for laparoscopic cholecystectomy on the respiratory system. Anaesthesia 51:744–749

    Article  CAS  PubMed  Google Scholar 

  54. Auler JO Jr, Miyoshi E, Fernandes CR, Bensenor FE, Elias S, Bonassa J (2002) The effects of abdominal opening on respiratory mechanics during general anesthesia in normal and morbidly obese patients: a comparative study. Anesth Analg 94:741–748

    Article  PubMed  Google Scholar 

  55. Santos RL, Santos MA, Sakae RS, Saldiva PH, Zin WA (1992) Effects of longitudinal laparotomy on respiratory system, lung, and chest wall mechanics. J Appl Physiol 72:1985–1990

    Article  CAS  PubMed  Google Scholar 

  56. Zin WA, Martins MA, Silva PR, Sakae RS, Carvalho AL, Saldiva PH (1989) Effects of abdominal opening on respiratory system mechanics in ventilated rats. J Appl Physiol 66:2496–2501

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Rubini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubini, A., Carniel, E.L. A Review of Recent Findings About Stress-Relaxation in the Respiratory System Tissues. Lung 192, 833–839 (2014). https://doi.org/10.1007/s00408-014-9630-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-014-9630-5

Keywords

Navigation