Skip to main content

Advertisement

Log in

Genetic Susceptibility to Lung Cancer Based on Candidate Genes in a Sample from the Mexican Mestizo Population: A Case–Control Study

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Background

Lung cancer (LC) is the leading cause of mortality caused by neoplasias worldwide. Although cigarette smoking is the primary cause, not all smokers develop LC. Polymorphic variations in genes associated with carcinogen metabolism, DNA repair, and cell-cycle dysregulation may alter an individual risk of developing LC. A polygenic cancer model was proposed, which considers genetic susceptibility to cancer is a global mechanism and suggests that it might be defined by the contributions of low-risk alleles in several candidate genes. This study focused on the analysis of 15 polymorphisms in 12 low-penetrance genes in a case–control study of a sample of Mexican Mestizo population.

Methods

A case–control study was performed with a total of 572 unrelated individuals, including 190 cases with a primary LC diagnosis and 382 healthy controls. The polymorphic status of the individuals was determined by TaqMan probe and RFLP techniques. The association between LC and genotype score (GS) was assessed by logistic regression.

Results

The results suggests a protective effect of the genotypes Arg/Lys of AhR rs2066853 (odds ratio [OR] 0.55, p = 0.03), Ile/Val of CYP1A1 rs1048943 (OR 0.49, p = 0.009), Tyr/His of EPHX1 rs1051740 (OR 0.53, p = 0.03), and A/A of CCND1 rs603965 (OR 0.44, p = 0.02). Analyses using the GS suggest that average cases have a larger number of risk alleles than controls (Student’s t test −4.85, p = 0.001; OR 1.25, p < 0.001).

Conclusions

Our results suggest significant differences between the GS for the cases and controls, which support the hypothesis underlying the additive and polygenic models for lung cancer risk depending on the polymorphisms in low-penetrance genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Xie Y, Minna J (2008) Predicting the future for people with lung cancer. Nat Med 14:812–813

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Ruíz-Godoy L, Rizo P, Sánchez F, Osornio-Vargas A, García-Cuellar C, Meneses A (2007) Mortality due to lung cancer in Mexico. Lung Cancer 58:184–190

    Article  PubMed  Google Scholar 

  3. Dong L, Potter J, White E, Ulrich C, Cardon L, Peters U (2008) Genetic susceptibility to cancer: the role of polymorphism in candidate genes. JAMA 299:2423–2434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Zienolddiny S, Campa D, Lind H, Ryberg D, Skaug V, Stangeland B et al (2008) A comprehensive analysis of phase I and phase II metabolism gene polymorphisms and risk of non-small cell lung cancer in smokers. Carcinogenesis 29(6):1164–1169

    Article  CAS  PubMed  Google Scholar 

  5. Zhang J, Gu S, Zhang P, Jia Z, Chang J (2010) ERCC2 Lys751Gln polymorphism is associated with lung cancer among Caucasians. Eur J Cancer 46:2479–2484

    Article  CAS  PubMed  Google Scholar 

  6. Lim W, Chen Y, Ali S, Chuah K, Eng P, Leong S et al (2011) Polymorphisms in inflammatory pathway genes, host factors and lung cancer risk in Chinese female never-smokers. Carcinogenesis 32(4):522–529

    Article  CAS  PubMed  Google Scholar 

  7. Wang X, Chorley B, Pittman G, Kleeberger S, Brothers J II, Liu G et al (2010) Genetic variation and antioxidant response genes expression in the bronchial airway epithelium of smokers at risk for lung cancer. Plos One 5(8):1–13

    Google Scholar 

  8. Hosgood H III, Menashe I, Shen M, Yeager M, Yuenger J, Rajaraman P et al (2008) Pathway-based evaluation of 380 candidate genes and lung cancer susceptibility suggests the importance of the cell cycle pathway. Carcinogenesis 29:1938–1943

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Vineis P, Manuguerra M, Kavvoura F, Guarrera S, Allione A, Rosa F et al (2009) A field synopsis on low penetrance variants in DNA repair genes and cancer susceptibility. J Natl Cancer Inst 101:24–36

    Article  CAS  PubMed  Google Scholar 

  10. Wang Y, Yang H, Li H, Li L, Wang H, Liu C et al (2009) Association between x-ray repair cross complementing group 1 codon 399 and 194 polymorphisms and lung cancer risk: a meta-analysis. Cancer Lett 285:134–140

    Article  CAS  PubMed  Google Scholar 

  11. Carlsten C, Sagoo G, Frodsham A, Burke W, Higgins J (2008) Glutathione S-transferase M1 (GSTM1) polymorphisms and lung cancer: a literature-based systematic HuGE review and meta-analysis. Am J Epidemiol 167(7):759–774

    Article  CAS  PubMed  Google Scholar 

  12. Raimondi S, Paracchini V, Autrup H, Barros-Dios J, Benhamou S, Boffetta P et al (2006) Meta- and pooled analysis of GSTT1 and lung cancer: a HuGE-GSEC review. Am J Epidemiol 164(11):1027–1042

    Article  CAS  PubMed  Google Scholar 

  13. Wang Y, Yang H, Li L, Wang H (2010) Glutathione S-transferase T1 gene deletion polymorphism and lung cancer risk in Chinese population: a meta-analysis. Cancer Epidemiol 34(5):593–597

    Article  CAS  PubMed  Google Scholar 

  14. Cote M, Chen W, Smith D, Benhamou S, Bouchardy C, Butkiewicz D et al (2009) Meta- and pooled analysis of GSTP1 polymorphism and lung cancer: a HuGE-GSEC review. Am J Epidemiol 169(7):802–814

    Article  PubMed Central  PubMed  Google Scholar 

  15. Chen Z, Li Z, Niu X, Ye X, Yu Y, Lu S (2011) The effect of CYP1A1 polymorphism on the risk of lung cancer: a global meta-analysis based on 71 case–control studies. Mutagenesis 26(3):437–446

    Article  CAS  PubMed  Google Scholar 

  16. Wang J, Zheng Y, Sun L, Wang L, Yu P, Li H et al (2011) CYP1A1 Ile462Val polymorphism and susceptibility to lung cancer: a meta-analysis based on 32 studies. Eur J Cancer Prev 20(6):445–452

    Article  CAS  PubMed  Google Scholar 

  17. Langevin S, Ioannidis J, Vineis P, Taioli E (2010) Assessment of cumulative evidence for the association between glutathione S-transferase polymorphisms and lung cancer: application of the Venice interim guidelines. Pharmacogenet Genomics 20(10):586–597

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Pharoah P, Antoniou A, Bobrow M, Zimmern R, Easton D, Ponder B (2002) Polygenic susceptibility to breast cancer and implications for prevention. Nat Genet 31:33–36

    Article  CAS  PubMed  Google Scholar 

  19. Kiyohara C, Yoshimasu K, Takayama K, Nakanishi Y (2007) Lung cancer susceptibility: are we on our way to identifying a high-risk group? Future Oncol 3:617–627

    Article  CAS  PubMed  Google Scholar 

  20. Fletcher O, Houlston R (2010) Architecture of inherited susceptibility to common cancer. Nat Rev Cancer 10:353–361

    Article  CAS  PubMed  Google Scholar 

  21. Pérez-Morales R, Méndez Ramírez I, Castro Hernández C, Martínez-Ramírez O, Gonsebatt M, Rubio J (2011) Polymorphisms associated with the risk of lung cancer in a healthy Mexican Mestizo population: application of the additive model for cancer. Genet Mol Biol 34(4):546–552

    Article  PubMed Central  PubMed  Google Scholar 

  22. Wacholder S, Chanock S, Garcia-Closas M, El ghormli L, Rothman N (2004) Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Nat Cancer Inst 96(6):434–442

    Article  PubMed  Google Scholar 

  23. Hassett C, Aicher L, Sidhu J, Omiecinski C (1994) Human microsomal epoxide hydrolase: genetic polymorphism and functional expression in vitro of aminoacid variants. Human Mol Genet 3(3):421–428

    Article  CAS  Google Scholar 

  24. Llorca J, Prieto-Salceda D, Combarros D, Dierssen-Sotosa T, Berciano J (2005) Riesgos competitivos de muerte y equilibrio de Hardy-Weinberg en estudios de casos y controles sobre asociación entre genes y enfermedades. GacSanit 19(4):321–324

    Google Scholar 

  25. Gelhaus S, Harvey R, Penning T, Blair I (2011) Regulation of benzo[a]pyrene-mediated DNA- and glutathione-adduct formation by 2,3,7,8-tetrachlorodibenzo-p-dioxin in human lung cells. Chem Res Toxicol 24(1):89–98

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Ferecatu I, Borot M, Bossard C, Leroux M, Boggetto N, Marano F (2010) Polycyclic aromatic hydrocarbon components contribute to the mitochondria-antiapoptotic effect of fine particulate matter on human bronchial epithelial cells via the aryl hydrocarbon receptor. Part Fibre Toxicol 7:18

    Article  PubMed Central  PubMed  Google Scholar 

  27. Koyano S, Saito Y, Fukushima-Uesaka H, Ishida S, Ozawa S, Kamatani N (2005) Functional analysis of six human aryl hydrocarbon receptor variants in a Japanese population. Drug Metab Dispos 33(8):1254–1260

    Article  CAS  PubMed  Google Scholar 

  28. Celius T, Matthews J (2010) Functional analysis of six human aryl hydrocarbon receptor variants in human breast cancer and mouse hepatoma cell lines. Toxicology 277(1–3):59–65

    Article  CAS  PubMed  Google Scholar 

  29. Gelhaus S, Gilad O, Hwang W, Penning T, Blair I (2012) Multidrug resistance protein (MRP) 4 attenuates benzo[a]pyrene-mediated DNA-adduct formation in human bronchoalveolar H358 cells. Toxicol Lett 209(1):58–66

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Qiuling S, Yuxin Z, Suhua Z, Cheng X, Shuguang L, Fengsheng H (2003) Cyclin D1 gene polymorphism and susceptibility to lung cancer in a Chinese population. Carcinogenesis 24(9):1499–1503

    Article  PubMed  Google Scholar 

  31. Sobti R, Kaur P, Kaur S, Singh J, Janmeja A, Jindal S (2006) Effects of cyclin D1 (CCND1) polymorphism on susceptibility to lung cancer in a North Indian population. Cancer Genet Cytogenet 170(2):108–114

    Article  CAS  PubMed  Google Scholar 

  32. Sofer-Levi Y, Resnitzky D (1996) Apoptosis induced by ectopic expression of cyclin D1 but not cyclin E. Oncogene 13(11):2431–2437

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grant PAPIIT-IN219807 (JR) from the UNAM and postgraduate scholarship CVU 204279 (RP) from the CONACYT. We thank Dr. Jorge Morales Fuentes and Dr. Enrique Guzmán (INER) for the blood samples and for the clinic diagnostics of the patients with cancer. We thank QFB. Miriam Balderas Morales for the recollection of blood samples and Pavel Petrosyan for careful and critical reading of the manuscript.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Rubio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Morales, R., Méndez-Ramírez, I., Moreno-Macias, H. et al. Genetic Susceptibility to Lung Cancer Based on Candidate Genes in a Sample from the Mexican Mestizo Population: A Case–Control Study. Lung 192, 167–173 (2014). https://doi.org/10.1007/s00408-013-9536-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-013-9536-7

Keywords

Navigation