Skip to main content
Log in

Combining Clinical and Analytical Parameters Improves Prediction of Malignant Pleural Effusion

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Purpose

The usefulness of a panel of tumour markers and clinical-radiological criteria for diagnosing malignant pleural effusion (MPE) is not clearly stated. Our purpose was to assess the performance of those parameters in the diagnosis of MPE.

Methods

Consecutive patients with exudative PE were enrolled and divided into two groups: MPE and non-MPE. Logistic regression analysis was used to estimate the probability of MPE. Four prognostic models were considered: (1) clinical-radiological variables; (2) analytical variables; (3) combination of clinical and analytical variables; and (4) simpler model removing some analytical variables. Calibration and discrimination (receiver operating characteristics curves and AUC) were performed.

Results

A total of 491 pleural exudates were included: tuberculous (n = 72), malignant (n = 211), parapneumonic (n = 115), empyemas (n = 32), or miscellaneous (n = 61). The AUC obtained with Model 1 (absence of chest pain and fever and radiological images compatible with malignancy), Model 2 (CEA, NSE, CYFRA 21-1, and TPS), Model 3 (sum of the variables of models 1 and 2), and Model 4 (the variables of model 1 plus CEA) were 0.918, 0.832, 0.952 (all with a P < 0.05), and 0.939 (P < 0.01 compared to models 1 and 2), respectively. The correct classification rate for Models 1, 2, 3, and 4, was 87.2, 79.5, 88.4, and 87.6 %, respectively.

Conclusions

All models analysed had a good diagnostic yield for MPE, being greater in those that combined radiological and analytical criteria. Although Model 3 obtained a higher yield, the simplest model (Model 4) is very attractive due to its simplicity of use in daily practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Light RW (2002) Clinical practice: pleural effusion. N Engl J Med 346:1971–1977

    Article  PubMed  Google Scholar 

  2. Maskell NA, Butland RJA (2003) BTS guidelines for the investigation of a unilateral pleural effusion in adults. Thorax 58(suppl 11):ii8–ii17

    Article  PubMed Central  PubMed  Google Scholar 

  3. Sahn SA (1989) State of the art: the pleura. Am Rev Respir Dis 138:188–234

    Google Scholar 

  4. San José ME, Álvarez D, Valdés L et al (1997) Utility of tumour markers in the diagnosis of neoplastic pleural effusion. Clin Chim Acta 265:193–205

    Article  PubMed  Google Scholar 

  5. Porcel JM, Vives M, Esquerda A et al (2004) Use of a panel of tumor markers (carcinoembryonic antigen, cancer antigen 125, carbohydrate antigen 15-3, and cytokeratin 19 fragments) in pleural fluid for the differential diagnosis of benign and malignant effusions. Chest 126:1757–1763

    Article  PubMed  Google Scholar 

  6. Shi HZ, Liang QL, Jiang J et al (2008) Diagnostic value of carcinoembryonic antigen in malignant pleural effusion: a meta-analysis. Respirology 13:518–527

    Article  PubMed  Google Scholar 

  7. Liang QL, Shi HZ, Qin XJ et al (2008) Diagnostic accuracy of tumour markers for malignant pleural effusion: a meta-analysis. Thorax 63:35–41

    Article  PubMed  Google Scholar 

  8. Huang WW, Tsao SM, Lai CL et al (2010) Diagnostic value of Her-2/neu, cyfra 21-1, and carcinoembryonic antigen levels in malignant pleural effusions of lung adenocarcinoma. Pathology 42:224–228

    Article  CAS  PubMed  Google Scholar 

  9. Hackbarth JS, Murata K, Reilly WM et al (2010) Performance of CEA and CA19-9 in identifying pleural effusions caused by specific malignancies. Clin Biochem 43:1051–1055

    Article  CAS  PubMed  Google Scholar 

  10. Hansen M, Faurschou P, Clementsen P (1998) Medical thoracoscopy, results and complications in 146 patients: a retrospective study. Respir Med 92:228–232

    Article  CAS  PubMed  Google Scholar 

  11. Ferrer J, Roldan J, Teixidor J et al (2005) Predictors of pleural malignancy in patients with pleural effusion undergoing thoracoscopy. Chest 127:1017–1022

    Article  PubMed  Google Scholar 

  12. Sahn SA (1987) Malignant pleural effusions. Semin Respir Med 9:43–53

    Article  Google Scholar 

  13. Villena-Garrido V, Ferrer-Sancho J, Hernández-Blasco L et al (2006) Diagnóstico y tratamiento del derrame pleural. Arch Bronconeumol 42:349–372

    Article  PubMed  Google Scholar 

  14. Boutin C, Astoul P (1998) Diagnostic thoracoscopy. Clin Chest Med 19:295–309

    Article  CAS  PubMed  Google Scholar 

  15. Brezger A, Kneib T, Lang S (2005) Bayes X: analyzing Bayesian structural additive regression models. J Stat Softw 14(11):1–22

    Article  Google Scholar 

  16. Eilers PHC, Marx BD (1996) Flexible smoothing using B-splines and penalties (with comments and rejoinder). Stat Sci 11:89–121

    Article  Google Scholar 

  17. Harrell FE Jr (2001) Regression modelling strategies: with applications to linear models, logistic regression, and survival analysis. Springer, New York

    Book  Google Scholar 

  18. R Development Core Team (2012). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org. Accessed 17 May 2013

  19. Ferrer JS, Munoz XG, Orriols RM et al (1996) Evolution of idiopathic pleural effusion. A prospective, long-term follow-up study. Chest 109:1508–1513

    Article  CAS  PubMed  Google Scholar 

  20. Bielsa S, Esquerda A, Salud A et al (2009) High levels of tumor markers in pleural fluid correlate with poor survival in patients with adenocarcinomatous or squamous malignant effusions. Eur J Intern Med 20:383–386

    Article  CAS  PubMed  Google Scholar 

  21. Gaspar MJ, de Miguel J, Garcia Diaz JD et al (2008) Clinical utility of a combination of tumour markers in the diagnosis of malignant pleural effusions. Anticancer Res 28:2947–2952

    CAS  PubMed  Google Scholar 

  22. Barak V, Goike H, Panaretakis KW et al (2004) Clinical utility of cytokeratins as tumor markers. Clin Biochem 37:529–540

    Article  CAS  PubMed  Google Scholar 

  23. Roberts ME, Neville E, Berrisford RG, Antunes G, Ali NJ (2010) Management of a malignant pleural effusion: British Thoracic Society pleural disease guideline 2010. Thorax 65(Suppl 2):ii32–ii40

    Article  PubMed  Google Scholar 

  24. MacEachern P, Tremblay A (2011) Pleural controversy: pleurodesis versus indwelling pleural catheters for malignant effusions. Respirology 16:747–754

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Valdés.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valdés, L., San-José, E., Ferreiro, L. et al. Combining Clinical and Analytical Parameters Improves Prediction of Malignant Pleural Effusion. Lung 191, 633–643 (2013). https://doi.org/10.1007/s00408-013-9512-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-013-9512-2

Keywords

Navigation