Skip to main content
Log in

ACE2 Activation Confers Endothelial Protection and Attenuates Neointimal Lesions in Prevention of Severe Pulmonary Arterial Hypertension in Rats

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Background

Angiotensin-converting enzyme 2 (ACE2), an ACE homolog, hydrolyzes angiotensin II and opposes its actions, and plays a protective role in the pathogenesis of pulmonary arterial hypertension (PAH). However, the underlying mechanisms involved in the effect of ACE2 on PAH are still uncertain. In this study, we observed the effects of ACE2 activation on endothelial dysfunction and vascular remodeling in the development of severe PAH in rats.

Methods

Severe PAH was induced by monocrotaline injection 1 week following left pneumonectomy, and ACE2 was activated by continuous injection of resorcinolnaphthalein. The PAH-related hemodynamics, pathological changes, and endothelium-dependent vasorelaxation were examined to assess the effects of ACE2 activation. In addition, the changes of the main components of the renin-angiotensin system were identified by ELISA or Western blotting.

Results

Severe PAH was established at 3 weeks and was characterized by high pulmonary arterial pressure (45 mmHg), significant right ventricular hypertrophy, neointimal occlusive lesions, and impaired endothelium-dependent relaxation in pulmonary arteries. Coadministration of resorcinolnaphthalein reduced pulmonary arterial pressure, right ventricular hypertrophy, and neointimal formation and shifted the endothelial-dependent responses toward values measured in normal rats. Theses changes were associated with an increase in ACE2 and angiotensin-(1–7) levels and a decrease in ACE and angiotensin II levels, in addition to a decrease in the ACE/ACE2 ratio and the angiotensin II/angiotensin-(1–7) ratio. The beneficial effects of resorcinolnaphthalein were abolished by A-779.

Conclusions

These findings suggested that ACE2 activation by resorcinolnaphthalein improved endothelial function and suppressed neointimal formation in the prevention of severe PAH by the mechanism of mediating the levels of the components of the renin-angiotensin system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fukumoto Y, Shimokawa H (2011) Recent progress in the management of pulmonary hypertension. Circ J 75(8):1801–1810

    Article  PubMed  Google Scholar 

  2. Nicod LP (2007) The endothelium and genetics in pulmonary arterial hypertension. Swiss Med Wkly 137:437–442

    PubMed  CAS  Google Scholar 

  3. Shenoy V, Qi Y, Katovich MJ et al (2011) ACE2, a promising therapeutic target for pulmonary hypertension. Curr Opin Pharmacol 11:150–155

    Article  PubMed  CAS  Google Scholar 

  4. Marshall RP (2003) The pulmonary rennin-angiotensin system. Curr Pharm Des 9:715–722

    Article  PubMed  CAS  Google Scholar 

  5. Bradford CN, Ely DR, Raizada MK (2010) Targeting the vasoprotective axis of the renin-angiotensin system: a novel strategic approach to pulmonary hypertensive therapy. Curr Hypertens Rep 12:212–219

    Article  PubMed  CAS  Google Scholar 

  6. Imai Y, Kuba K, Ohto-Nakanishi T et al (2010) Angiotensin-converting enzyme 2 (ACE2) in disease pathogenesis. Circ J 74(3):405–410

    Article  PubMed  CAS  Google Scholar 

  7. Yamazato Y, Ferreira AJ, Hong KH et al (2009) Prevention of pulmonary hypertension by angiotensin-converting enzyme 2 gene transfer. Hypertension 54:365–371

    Article  PubMed  CAS  Google Scholar 

  8. Ferreira AJ, Shenoy V, Yamazato Y et al (2009) Evidence for angiotensin-converting enzyme 2 as a therapeutic target for the prevention of pulmonary hypertension. Am J Respir Crit Care Med 179:1048–1054

    Article  PubMed  CAS  Google Scholar 

  9. Hernández Prada JA, Ferreira AJ, Katovich MJ, Shenoy V et al (2008) Structure-based identification of small-molecule angiotensin-converting enzyme 2 activators as novel antihypertensive agents. Hypertension 51:1312–1317

    Article  PubMed  Google Scholar 

  10. Li G, Xu YL, Ling F et al (2012) Angiotensin-converting enzyme 2 activation protects against pulmonary arterial hypertension through improving early endothelial function and mediating cytokines levels. Chin Med J (Engl) 125(8):1381–1388

    CAS  Google Scholar 

  11. Okada K, Tanaka Y, Bernstein M et al (1997) Pulmonary hemodynamics modify the rat pulmonary artery response to injury. A neointimal model of pulmonary hypertension. Am J Pathol 151:1019–1025

    PubMed  CAS  Google Scholar 

  12. Schermuly RT, Dony E, Ghofrani HA et al (2005) Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest 115:2811–2821

    Article  PubMed  CAS  Google Scholar 

  13. Hyman AL, Hao Q, Tower A et al (1998) Novel catheterization technique for the in vivo measurement of pulmonary vascular responses in rats. Am J Physiol 274:H1218–H1229

    PubMed  CAS  Google Scholar 

  14. Nishimura T, Vaszar LT, Faul JL et al (2003) Simvastatin rescues rats from fatal pulmonary hypertension by inducing apoptosis of neointimal smooth muscle cells. Circulation 108:1640–1645

    Article  PubMed  CAS  Google Scholar 

  15. Gembardt F, Sterner-Kock A, Imboden H, Spalteholz M et al (2005) Organ-specific distribution of ACE2 mRNA and correlating peptidase activity in rodents. Peptides 26:1270–1277

    Article  PubMed  CAS  Google Scholar 

  16. Zhong JC, Yu XY, Lin QX et al (2008) Enhanced angiotensin converting enzyme 2 regulates the insulin/Akt signalling pathway by blockade of macrophage migration inhibitory factor expression. Br J Pharmacol 153(1):66–74

    Article  PubMed  CAS  Google Scholar 

  17. Lovren F, Pan Y, Quan A et al (2008) Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis. Am J Physiol Heart Circ Physiol 295:H1377–H1384

    Article  PubMed  CAS  Google Scholar 

  18. Sampaio WO, Souza dos Santos RA, Faria-Silva R, da Mata Machado LT et al (2007) Angiotensin-(1–7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension 49(1):185–192

    Article  PubMed  CAS  Google Scholar 

  19. Muthalif MM, Benter IF, Uddin MR et al (1998) Signal transduction mechanisms involved in angiotensin-(1–7)-stimulated arachidonic acid release and prostanoid synthesis in rabbit aortic smooth muscle cells. J Pharmacol Exp Ther 284(1):388–398

    PubMed  CAS  Google Scholar 

  20. Zhang C, Zhao YX, Zhang YH et al (2010) Angiotensin-converting enzyme 2 attenuates atherosclerotic lesions by targeting vascular cells. Proc Natl Acad Sci USA 107:15886–15891

    Article  PubMed  CAS  Google Scholar 

  21. Rentzsch B, Todiras M, Iliescu R et al (2008) Transgenic angiotensin-converting enzyme 2 overexpression in vessels of SHRSP rats reduces blood pressure and improves endothelial function. Hypertension 52:967–973

    Article  PubMed  CAS  Google Scholar 

  22. Hacking WJ, VanBavel E, Spaan JA (1996) Shear stress is not sufficient to control growth of vascular networks: a model study. Am J Physiol 270:H364–H375

    PubMed  CAS  Google Scholar 

  23. Pasterkamp G, Galis ZS, de Kleijn DP (2004) Expansive arterial remodeling: location, location, location. Arterioscler Thromb Vasc Biol 24:650–657

    Article  PubMed  CAS  Google Scholar 

  24. Shenoy V, Ferreira AJ, Qi Y et al (2010) The angiotensin-converting enzyme 2/angiogenesis-(1–7)/Mas axis confers cardiopulmonary protection against lung fibrosis and pulmonary hypertension. Am J Respir Crit Care Med 182:1065–1072

    Article  PubMed  CAS  Google Scholar 

  25. Huang H, Zhang P, Wang Z et al (2011) Activation of endothelin-1 receptor signaling pathways is associated with neointima formation, neoangiogenesis and irreversible pulmonary artery hypertension in patients with congenital heart disease. Circ J 75(6):1463–1471

    Article  PubMed  CAS  Google Scholar 

  26. Curcio A, Torella D, Indolfi C (2011) Mechanisms of smooth muscle cell proliferation and endothelial regeneration after vascular injury and stenting: approach to therapy. Circ J 75(6):1287–1296

    Article  PubMed  CAS  Google Scholar 

  27. Hayashi N, Yamamoto K, Ohishi M et al (2010) The counterregulating role of ACE2 and ACE2-mediated angiotensin 1–7 signaling against angiotensin II stimulation in vascular cells. Hypertens Res 33:1182–1185

    Article  PubMed  CAS  Google Scholar 

  28. Jin XQ, Lu ZQ, Lin X (2011) Effect of ACE2 gene transfection on the proliferation of vascular smooth muscle cells in rats. Zhonghua Yi Xue Za Zhi 91:125–128

    PubMed  CAS  Google Scholar 

  29. Sampaio WO, Henrique de Castro C et al (2007) Angiotensin-(1–7) counterregulates angiotensin II signaling in human endothelial cells. Hypertension 50:1093–1098

    Article  PubMed  CAS  Google Scholar 

  30. Igase M, Kohara K, Nagai T et al (2008) Increased expression of angiotensin converting enzyme 2 in conjunction with reduction of neointima by angiotensin II type 1 receptor blockade. Hypertens Res 31:553–559

    Article  PubMed  Google Scholar 

  31. Ferreira AJ, Shenoy V, Qi Y, Fraga-Silva RA et al (2011) Angiotensin-converting enzyme 2 activation protects against hypertension-induced cardiac fibrosis involving extracellular signal-regulated kinases. Exp Physiol 96(3):287–294

    Article  PubMed  CAS  Google Scholar 

  32. Xie X, Chen J, Wang X et al (2006) Age- and gender-related difference of ACE2 expression in rat lung. Life Sci 78(19):2166–2171

    Article  PubMed  CAS  Google Scholar 

  33. Vickers C, Hales P, Kaushik V et al (2002) Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem 277:14838–14843

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants from the Specialized Research Fund for the Doctoral Program of Higher Education (20111107110006).

Conflict of interest

The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizhong Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, G., Liu, Y., Zhu, Y. et al. ACE2 Activation Confers Endothelial Protection and Attenuates Neointimal Lesions in Prevention of Severe Pulmonary Arterial Hypertension in Rats. Lung 191, 327–336 (2013). https://doi.org/10.1007/s00408-013-9470-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-013-9470-8

Keywords

Navigation