Skip to main content

Advertisement

Log in

ALK-Mutated Non-Small-Cell Lung Cancer: A New Strategy for Cancer Treatment

  • Published:
Lung Aims and scope Submit manuscript

Abstract

The anaplastic lymphoma kinase (ALK) tyrosine kinase (TK) receptor has emerged recently as a potentially relevant biomarker and therapeutic target in solid and hematologic tumors. A variety of alterations in the ALK gene, such as mutations, overexpression, amplification, translocations, or other structural rearrangements, have been implicated in human cancer tumorigenesis. In this article we review the potential role that ALK may have in lung tumor origin, the methodology to detect the different molecular alterations, and the most important clinical aspects of ALK alterations in NSCLC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. American Cancer Society. Cancer Facts and Figures 2011. Atlanta, GA: American Cancer Society, 2011. http://www.cancer.org/Research/CancerFactsFigures/CancerFactsFigures/cancer-facts-figures-2011. Accessed 27 July 2011

  2. Webb TR, Slavish J, George RE, Look AT et al (2009) Anaplastic lymphoma kinase: role in cancer pathogenesis and small molecule inhibitor development for therapy. Expert Rev Anticancer Ther 9:331–356

    Article  PubMed  CAS  Google Scholar 

  3. Lin E, Li L, Guan Y, Soriano R et al (2009) Exon array profiling detects EML4-ALK fusion in breast, colorectal, and non-small cell lung cancers. Mol Cancer Res 7:1466–1476

    Article  PubMed  CAS  Google Scholar 

  4. Fukuyoshi Y, Inoue H, Kita Y, Utsunomiya T, Ishida T, Mori M (2008) EML4-ALK fusion transcript is not found in gastrointestinal and breast cancers. Br J Cancer 98:1536–1539

    Article  PubMed  CAS  Google Scholar 

  5. Janoueix-Lerosey I, Lequin D, Brugieres L et al (2008) Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 455:967–970

    Article  PubMed  CAS  Google Scholar 

  6. Soda M, Choi YL, Enomoto M, Takada S et al (2007) Identification of the transforming EML4-ALK fusion gene in nonsmall-cell lung cancer. Nature 448:561–566

    Article  PubMed  CAS  Google Scholar 

  7. Morris SW, Kirstein MN, Valentine MB et al (1995) Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 267(5196):316–317

    PubMed  CAS  Google Scholar 

  8. Li R, Morris SW (2008) Development of anaplastic lymphoma kinase (ALK) small-molecule inhibitors for cancer therapy. Med Res Rev 28(3):372–412

    Article  PubMed  CAS  Google Scholar 

  9. Kelleher FC, McDermott R (2010) The emerging pathogenic and therapeutic importance of the anaplastic lymphoma kinase gene. Eur J Cancer 46(13):2357–2368

    Article  PubMed  CAS  Google Scholar 

  10. Stoica GE, Kuo A, Aigner A, Sunitha I, Souttou B, Malerczyk C et al (2001) Identification of anaplastic lymphoma kinase as a receptor for the growth factor pleiotrophin. J Biol Chem 276:16772–16779

    Article  PubMed  CAS  Google Scholar 

  11. Stoica GE, Kuo A, Powers C, Bowden ET, Sale EB, Riegel AT et al (2002) Midkine binds to anaplastic lymphoma kinase (ALK) and acts as a growth factor for different cell types. J Biol Chem 277:35990–35998

    Article  PubMed  CAS  Google Scholar 

  12. Tartari CJ, Gunby RH, Coluccia AM et al (2008) Characterization of some molecular mechanisms governing autoactivation of the catalytic domain of the anaplastic lymphoma kinase. J Biol Chem 283:3743–3750

    Article  PubMed  CAS  Google Scholar 

  13. Lee CC, Jia Y, Li N, Sun X, Ng K, Ambing E et al (2010) Crystal structure of the ALK (anaplastic lymphoma kinase) catalytic domain. Biochem J 430:425–437

    Article  PubMed  CAS  Google Scholar 

  14. Wellstein A, Toretsky JA (2011) Hunting ALK to feed targeted cancer therapy. Nat Med 17(3):290–291

    Article  PubMed  CAS  Google Scholar 

  15. Mossé YP, Laudenslager M, Longo L et al (2008) Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455(7215):930–935

    Article  PubMed  Google Scholar 

  16. Chen Z, Sasaki T, Tan X et al (2010) Inhibition of ALK, PI3K/MEK, and HSP90 in murine lung adenocarcinoma induced by EML4-ALK fusion oncogene. Cancer Res 70(23):9827–9836

    Article  PubMed  CAS  Google Scholar 

  17. Palmer RH, Vernersson E, Grabbe C, Hallberg B (2009) Anaplastic lymphoma kinase: signalling in development and disease. Biochem J 420:345–361

    Article  PubMed  CAS  Google Scholar 

  18. Koivunen JP, Mermel C, Zejnullahu K et al (2008) EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin Cancer Res 14:4275–4283

    Article  PubMed  CAS  Google Scholar 

  19. Shinmura K, Kageyama S, Tao H et al (2008) EML4-ALK fusion transcripts, but no NPM-, TPM3-, CLTC-, ATIC-, or TFG-ALK fusion transcripts, in non-small cell lung carcinomas. Lung Cancer 61:163–169

    Article  PubMed  Google Scholar 

  20. Takeuchi K, Choi YL, Togashi Y, Soda M, Hatano S, Inamura K et al (2009) KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin Cancer Res 15:3143–3149

    Article  PubMed  CAS  Google Scholar 

  21. Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H et al (2007) Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131:1190–1203

    Article  PubMed  CAS  Google Scholar 

  22. Ladanyi M, Cavalchire G (1996) Molecular variant of the NPM-ALK rearrangement of Ki-1 lymphoma involving a cryptic ALK splice site. Genes Chromosomes Cancer 15:173–177

    Article  PubMed  CAS  Google Scholar 

  23. De Castro-Carpeño J, Perona R, Belda-Iniesta C (2011) Treatment for ALK-mutated non-small-cell lung cancer: a new miracle in the research race. Clin Transl Oncol 13:774–779

    Article  PubMed  Google Scholar 

  24. Kasprzycka M, Marzec M, Liu X, Zhang Q, Wasik MA (2006) Nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) oncoprotein induces the T regulatory cell phenotype by activating STAT3. Proc Natl Acad Sci USA 103:9964–9969

    Article  PubMed  CAS  Google Scholar 

  25. Chiarle R, Simmons WJ, Cai H et al (2005) Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat Med 11:623–629

    Article  PubMed  CAS  Google Scholar 

  26. Bai RY, Ouyang T, Miething C, Morris SW, Peschel C, Duyster J (2000) Nucleophosmin-anaplastic lymphoma kinase associated with anaplastic large-cell lymphoma activates the phosphatidylinositol 3-kinase/Akt antiapoptotic signaling pathway. Blood 96:4319–4327

    PubMed  CAS  Google Scholar 

  27. Zou HY, Li Q, Lee JH et al (2007) An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res 67:4408–4417

    Article  PubMed  CAS  Google Scholar 

  28. Armstrong F, Duplantier MM, Trempat P et al (2004) Differential effects of X-ALK fusion proteins on proliferation, transformation, and invasion properties of NIH3T3 cells. Oncogene 23:6071–6082

    Article  PubMed  CAS  Google Scholar 

  29. McDermott U, Iafrate AJ, Gray NS et al (2008) Genomic alterations of anaplastic lymphoma kinase may sensitize tumors to anaplastic lymphoma kinase inhibitors. Cancer Res 68:3389–3395

    Article  PubMed  CAS  Google Scholar 

  30. Christensen JG, Zou HY, Arango ME et al (2007) Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma. Mol Cancer Ther 6:3314–3322

    Article  PubMed  CAS  Google Scholar 

  31. Perner S, Wagner PL, Demichelis F et al (2008) EML4-ALK fusion lung cancer: a rare acquired event. Neoplasia 10:298–302

    PubMed  CAS  Google Scholar 

  32. Salido M, Pijuan L, Martínez-Aviles L et al (2011) Increased ALK gene copy number and amplification are frequent in non-small cell lung cancer. J Thorac Oncol 6:21–27

    Article  PubMed  Google Scholar 

  33. Kwak EL, Bang YJ, Camidge DR et al (2010) Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 363:1693–1703

    Article  PubMed  CAS  Google Scholar 

  34. Camidge DR, Bang YJ, Kwak EL et al. (2011) Progression-free survival (PFS) from a phase 1 study of crizotinib (PF-02341066) in patients with ALK-positive non-small cell lung cancer (NSCLC). J Clin Oncol 29(ASCO Meeting Abstr Suppl): Abstr 2501

    Google Scholar 

  35. Shepherd FA, Rodrigues Pereira J, Ciuleanu T et al (2005) Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 353:123–132

    Article  PubMed  CAS  Google Scholar 

  36. Hanna N, Shepherd FA, Fossella FV et al (2004) Randomized phase III trial of pemetrexed versus docetaxel in patients with non-small-cell lung cancer previously treated with chemotherapy. J Clin Oncol 22:1589–1597

    Article  PubMed  CAS  Google Scholar 

  37. Shaw AT, Yeap BY, Solomon BJ et al (2011) Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol 12(11):1004–1012

    Article  PubMed  CAS  Google Scholar 

  38. Choi YL, Soda M, Yamashita Y et al (2010) EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med 363:1734–1739

    Article  PubMed  CAS  Google Scholar 

  39. Bossi RT, Saccardo MB, Ardini E et al (2010) Crystal structures of anaplastic lymphoma kinase in complex with ATP competitive inhibitors. Biochemistry 49:6813–6825

    Article  PubMed  CAS  Google Scholar 

  40. Heuckmann JM, Hölzel M, Sos ML et al (2011) ALK mutations conferring differential resistance to structurally diverse ALK inhibitors. Clin Cancer Res 17(23):7394–7401

    Article  PubMed  CAS  Google Scholar 

  41. Galkin AV, Melnick JS, Kim S, Hood TL, Li N, Li L et al (2007) Identification of NVP-TAE684, a potent, selective, and efficacious inhibitor of NPMALK. Proc Natl Acad Sci USA 104:270–275

    Article  PubMed  CAS  Google Scholar 

  42. Van Roosbroeck K, Cools J, Dierickx D et al (2010) ALK-positive large B-cell lymphomas with cryptic SEC31A-ALK and NPM1-ALK fusions. Haematologica 95:509–513

    Article  PubMed  Google Scholar 

  43. Sabbatini P, Korenchuk S, Rowand JL et al (2009) GSK1838705A inhibits the insulin-like growth factor-1 receptor and anaplastic lymphoma kinase and shows antitumor activity in experimental models of human cancers. Mol Cancer Ther 8:2811–2820

    Article  PubMed  CAS  Google Scholar 

  44. Rabindran SK, Sabbatini P, Korenchuk et al. (2010) Characterization of GSK1838705A, a small molecule inhibitor of the insulin-like growth factor-1 receptor and anaplastic lymphoma kinase that delays growth of IGF-1R-dependent tumors and causes regression of ALK-dependent tumors in vivo. Proceedings of the 100th annual meeting of the American association for cancer research (AACR), Denver, CO, 27–30 September 2010

  45. Pulford K, Morris SW, Turturro F (2004) Anaplastic lymphoma kinase proteins in growth control and cancer. J Cell Physiol 199:330–358

    Article  PubMed  CAS  Google Scholar 

  46. Ardini E, Menichincheri M, De Ponti C et al. (2009) Characterization of NMS-E628, a small molecule inhibitor of anaplastic lymphoma kinase with antitumor efficacy in ALK-dependent lymphoma and non-small cell lung cancer models. Mol Cancer Therapeutics 8(12 Suppl 1): abstr 243

    Google Scholar 

  47. Shakespeare WC, Fantin VR, Wang F et al. (2009) Discovery of potent and selective orally active inhibitors of anaplastic lymphoma kinase (ALK). Proceedings of the 100th annual meeting of the American association for cancer research (AACR), Denver, CO, 27–30 September 2010, abstract 3738

  48. Rivera VM, Anjum R, Wang F et al. (2010) Efficacy and pharmacodynamic analysis of AP26113, a potent and selective orally active inhibitor of anaplastic lymphoma kinase (ALK). Proceedings of the 101th annual meeting of the American association for cancer research (AACR), Washington, DC, 17–21 April 2010, poster 3623

  49. Zhang S, Wang F, Keats J, Ning Y, Wardwell SD (2010) AP26113, a potent ALK inhibitor, overcomes mutations in EML4-ALK that confer resistance to PF-02341066 (PF1066). Proceedings of the 101th annual meeting of the American association for cancer research (AACR), Washington, DC, 17–21 April 2010, poster LB-298

  50. Rodig SJ, Mino-Kenudson M, Dacic S et al (2009) Unique clinicopathologic features characterize ALK-rearranged lung adenocarcinoma in the western population. Clin Cancer Res 15:5216–5223

    Article  PubMed  CAS  Google Scholar 

  51. Choi YL, Takeuchi K, Soda M et al (2008) Identification of novel isoforms of the EML4-ALK transforming gene in non-small cell lung cancer. Cancer Res 68:4971–4976

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

Luis Cabezón-Gutiérrez, Parham Khosravi-Shahi, Victor Manuel Diaz-Muñoz-de-la-Espada, Jose Rafael Carrión-Galindo, Itziar Eraña-Tomás, and María Castro-Otero have no conflicts of interest or financial ties to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Cabezón-Gutiérrez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabezón-Gutiérrez, L., Khosravi-Shahi, P., Diaz-Muñoz-de-la-Espada, V.M. et al. ALK-Mutated Non-Small-Cell Lung Cancer: A New Strategy for Cancer Treatment. Lung 190, 381–388 (2012). https://doi.org/10.1007/s00408-012-9391-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-012-9391-y

Keywords

Navigation