Skip to main content
Log in

Flow and Volume Dependence of Rat Airway Resistance During Constant Flow Inflation and Deflation

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Study Objectives

The aim of this study was to measure the flow and volume dependence of both the ohmic and the viscoelastic pressure dissipations of the normal rat respiratory system separately during inflation and deflation.

Method

The study was conducted in the Respiratory Physiology Laboratory in our institution. Measurements were obtained for Seven albino Wistar rats of both sexes by using the flow interruption method during constant flow inflations and deflations. Measurements included anesthesia induction, tracheostomy and positioning of a tracheal cannula, positive pressure ventilation, constant flow respiratory system inflations and deflations at two different volumes and flows.

Results

The ohmic resistance exhibited volume and flow dependence, decreasing with lung volume and increasing with flow rate, during both inflation and deflation. The stress relaxation-related viscoelastic resistance also exhibited volume and flow dependence. It decreased with the flow rate at a constant lung volume during both inflation and deflation, but exhibited a different behavior with the lung volume at a constant flow rate (i.e., increased during inflations and decreased during deflations). Thus, stress relaxation in the rat lungs exhibited a hysteretic behavior.

Conclusions

The observed flow and volume dependence of respiratory system resistance may be predicted by an equation derived from a model of the respiratory system that consists of two distinct compartments. The equation agrees well with the experimental data and indicates that the loading time is the critical parameter on which stress relaxation depends, during both lung inflation and deflation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Faffe DS, Zin WA (2009) Lung parenchymal mechanics in health and disease. Physiol Rev 89:759–775

    Article  PubMed  CAS  Google Scholar 

  2. Hughes R, May AJ, Widdicombe JG (1959) Stress relaxation in rabbit lungs. J Physiol 146:85–97

    PubMed  CAS  Google Scholar 

  3. Kochi T, Bates JHT, Okubo S, Petersen ES, Milic-Emili J (1989) Respiratory mechanics determined by flow interruption during passive expiration in cats. Resp Physiol 78:243–252

    Article  CAS  Google Scholar 

  4. Rubini A (2011) The effect of body warming on respiratory mechanics in rat. Respir Physiol Neurobiol 175:255–260

    Article  PubMed  Google Scholar 

  5. Bates JHT, Rossi A, Milic-Emili J (1985) Analysis of the behaviour of the respiratory system with constant inspiratory flow. J Appl Physiol 58:1840–1848

    PubMed  CAS  Google Scholar 

  6. Bates JHT, Baconnier P, Milic-Emili J (1988) A theoretical analysis of interrupter technique for measuring respiratory mechanics. J Appl Physiol 64:2204–2214

    PubMed  CAS  Google Scholar 

  7. D’Angelo E, Calderini E, Torri G, Robatto M, Bono D, Milic-Emili J (1989) Respiratory mechanics in anesthetized paralyzed humans: effects of flow, volume, and time. J Appl Physiol 67:2556–2564

    PubMed  Google Scholar 

  8. Similowsky T, Levy P, Corbeil C, Albala M, Pariente R, Derenne JP, Bates JHT, Jonson B, Milic-Emili J (1989) Viscoelastic behaviour of lung and chest wall in dogs determined by flow interruption. J Appl Physiol 67:2219–2229

    Google Scholar 

  9. Kochi T, Okubo S, Zin WA, Milic-Emili J (1988) Flow and volume dependence of pulmonary mechanics in anesthetized cats. J Appl Physiol 64:441–450

    PubMed  CAS  Google Scholar 

  10. Skarbuskis M, Shardonofsky F, Milic-Emili J (1989) Flow and volume dependence of expiratory resistance in anesthetized cats. J Appl Physiol 67:1013–1019

    Google Scholar 

  11. Buzello W, Diefenbach C, Nigrovic W (1996) Muscle relaxants: a clinical update. Acta Anaesthesiol Scand Suppl 109:165–167

    Google Scholar 

  12. Rubini A, Gasperetti A, Catena V, Del Monte D (2010) Effects of acute blood volume expansion on respiratory mechanics in the rat. Respiration 79:497–505

    Article  PubMed  CAS  Google Scholar 

  13. Rubini A (2010) IL-6 increases the airway resistance in the rat. Cytokine 51:266–273

    Article  PubMed  CAS  Google Scholar 

  14. Chang HK, Mortola JP (1981) Fluid dynamic factors in tracheal pressure measurements. J Appl Physiol 51:218–225

    PubMed  CAS  Google Scholar 

  15. Reta GS, Riva JA, Piriz H, Medeiros AS, Rocco PMR, Zin WA (2000) Effects of halotane on respiratory mechanics and lung histopathology in normal rats. Br J Anaesth 84:372–377

    PubMed  CAS  Google Scholar 

  16. Bates JHT, Hunter IW, Sly PD, Okubo S, Filiatrault S, Milic-Emili J (1987) Effect of valve closure time on the determination of respiratory resistance by flow interruption. Med Biol Eng Comput 25:136–140

    Article  PubMed  CAS  Google Scholar 

  17. Peratoner A, Nascimento CS, Santana MCE, Cadete RA, Negri EM, Gullo A, Rocco PRM, Zin WA (2004) Effects of propofol on repiratory mechanics and lung histology in normal rats. Br J Anaesth 92:737–740

    Article  PubMed  CAS  Google Scholar 

  18. Rubini A, Bondì M (2007) Effect of the oestral cycle on respiratory mechanics in the rat. Acta Physiol 189:379–383

    Article  CAS  Google Scholar 

  19. Briscoe WA, Du Bois AP (1958) The relationship between airway resistance, airway conductance and lung volume in subjects of different age and body size. J Clin Invest 37:1279–1285

    Article  PubMed  CAS  Google Scholar 

  20. Tomalak W, Peslin R, Duvivier C (1998) Variations in airways impedance during respiratory cycle derived from combined measurements of input and transfer impedances. Eur Resp J 12:1436–1441

    Article  CAS  Google Scholar 

  21. Hirai T, Mc Keown KA, Gomes RF, Bates JH (1999) Effects of lung volume on lung and chest wall mechanics in rat. J Appl Physiol 86:16–21

    PubMed  CAS  Google Scholar 

  22. Tajiri S, Kondo T, Yamabayashi H (2006) Functional residual capacity and airway resistance of the rat measured with a heat- and temperature-adjusted body plethysmograph. J Physiol Sci 56:449–454

    Article  PubMed  Google Scholar 

  23. Rohrer F (1915) Der Stromungswiderstand in den menschlichen Atemwegen und der Einfluss der unregelmassigen Verzeigung des Bronchialsystems auf den Atmungverlauf in verschiedene Lungen-bezirken. Arch Ges Physiol 162:255–259

    Google Scholar 

  24. Oostveen E, Peslin R, Gallina C, Zwart A (1989) Flow and volume dependence of respiratory mechanical properties studied by forced oscillation. J Appl Physiol 67:2212–2218

    PubMed  CAS  Google Scholar 

  25. Saldiva PHN, Cardoso WV, Caldeira MPR, Zin WA (1987) Mechanics in rats by end-inflation occlusion and single-breath methods. J Appl Physiol 63:1711–1718

    PubMed  CAS  Google Scholar 

  26. Eissa RT, Ranieri VM, Corbeil C, Chassè M, Robatto FM, Braidy J, Milic-Emili J (1991) Analysis of behaviour of respiratory system in ARDS patients: effects of flow, volume and time. J Appl Physiol 70:2719–2729

    Article  PubMed  CAS  Google Scholar 

  27. Guèrin C, Coussa ML, Eissa NT, Corbeil C, Chassè M, Braidy J, Matar N, Milic-Emili J (1993) Lung and chest wall mechanics in mechanically ventilated COPD patients. J Appl Physiol 74:1570–1580

    PubMed  Google Scholar 

  28. Silva PL, Passaro CP, Cagido VR, Bozza M, Dolhnikoff M, Negri EM, Morales MM, Capelozzi VL, Zin WA, Rocco PR (2008) Impact of lung remodelling on respiratory mechanics in a model of severe allergic inflammation. Respir Physiol Neurobiol 160:239–248

    Article  PubMed  CAS  Google Scholar 

  29. Tantucci C, Corbeil C, Chassè M, Robatto FM, Nava S, Braidy J, Matar N, Milic-Emili J (1992) Flow and volume dependence of respiratory system flow resistance in patients with adult respiratory distress syndrome. Am Rev Respir Dis 145:355–360

    PubMed  CAS  Google Scholar 

  30. Xisto DG, Farias LL, Ferreira HC, Picanco MR, Amitrano D, Lapa E, Silva JR, Negri EM, Mauad T, Carnielli D, Silva LF, Capelozzi VL, Faffe DS, Zin WA, Rocco PR (2005) Lung parenchyma remodelling in a murine model of chronic allergic inflammation. Am J Respir Crit Care Med 171:829–837

    Article  PubMed  Google Scholar 

  31. Sharp JT, Hammond MD (1991) Pressure-volume relationships. In: Crystal RG, West TB (eds) The lung: scientific foundations, vol 2. Raven Press, New York, pp 839–854

    Google Scholar 

  32. Peslin R, Duvivier C, Reichart E, Gallina C (1990) Stress adaptation and low-frequency impedance of rat lungs. J Appl Physiol 69:1080–1086

    PubMed  CAS  Google Scholar 

  33. Horn LW (1978) Evaluation of some alternative mechanisms for interface-related stress relaxation in lung. Resp Physiol 34:345–357

    Article  CAS  Google Scholar 

  34. Natali A, Pavan P, Carniel E, Dorow C (2004) Viscoelastic response of the periodontal ligament: an experimental-numerical analysis. Connective Tissue Res 45:222–230

    Article  CAS  Google Scholar 

  35. Natali AN, Carniel EL, Pavan PG (2008) Constitutive modelling of inelastic behaviour of cortical bone. Med Eng Phys 30:905–912

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Rubini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubini, A., Carniel, E.L., Parmagnani, A. et al. Flow and Volume Dependence of Rat Airway Resistance During Constant Flow Inflation and Deflation. Lung 189, 511–518 (2011). https://doi.org/10.1007/s00408-011-9318-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-011-9318-z

Keywords

Navigation