Skip to main content

Cough: The Emerging Role of the TRPA1 Channel

Abstract

Sneezing, cough, mucus secretion, and bronchoconstriction represent the main components of a coordinated and efficient reaction direct to expel or neutralize irritant agents from the respiratory system. A dense network of sensory nerves localized from the nose to the lower airways beneath the epithelium subserves this function. A variety of receptors and channels present in sensory nerve terminals by sensing irritant stimuli activate the system in emergence and initiate protective reflex responses, including cough. Previous and recent literature highlights the prominent role of some transient receptor potential (TRP) ion channels, and specifically the vanilloid 1 (TRPV1) and the ankyrin 1 (TRPA1) as sensors of airway irritation and initiators of the cough reflex.

This is a preview of subscription content, access via your institution.

References

  1. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  CAS  PubMed  Google Scholar 

  2. Bevan S, Geppetti P (1994) Protons: small stimulants of capsaicin-sensitive sensory nerves. Trends Neurosci 17:509–512

    Article  CAS  PubMed  Google Scholar 

  3. Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–543

    Article  CAS  PubMed  Google Scholar 

  4. Hwang SW, Cho H, Kwak J, Lee SY, Kang CJ, Jung J, Cho S, Min KH, Suh YG, Kim D, Oh U (2000) Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc Natl Acad Sci USA 97:6155–6160

    Article  CAS  PubMed  Google Scholar 

  5. Huang SM, Bisogno T, Trevisani M, Al-Hayani A, De Petrocellis L, Fezza F, Tognetto M, Petros TJ, Krey JF, Chu CJ, Miller JD, Davies SN, Geppetti P, Walker JM, Di Marzo V (2002) An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc Natl Acad Sci USA 99:8400–8405

    Article  CAS  PubMed  Google Scholar 

  6. Materazzi S, Nassini R, Gatti R, Trevisani M, Geppetti P (2009) Cough sensors. II. Transient receptor potential membrane receptors on cough sensors. Handb Exp Pharmacol 187:49–61

    Article  CAS  PubMed  Google Scholar 

  7. Fujimura M, Kamio Y, Hashimoto T, Matsuda T (1994) Cough receptor sensitivity and bronchial responsiveness in patients with only chronic nonproductive cough: in view of effect of bronchodilator therapy. J Asthma 31:463–472

    Article  CAS  PubMed  Google Scholar 

  8. Wong CH, Morice AH (1999) Cough threshold in patients with chronic obstructive pulmonary disease. Thorax 54:62–64

    Article  CAS  PubMed  Google Scholar 

  9. Doherty MJ, Mister R, Pearson MG, Calverley PM (2000) Capsaicin responsiveness and cough in asthma and chronic obstructive pulmonary disease. Thorax 55:643–649

    Article  CAS  PubMed  Google Scholar 

  10. Millqvist E (2000) Cough provocation with capsaicin is an objective way to test sensory hyperreactivity in patients with asthma-like symptoms. Allergy 55:546–550

    Article  CAS  PubMed  Google Scholar 

  11. Higenbottam T (2002) Chronic cough and the cough reflex in common lung diseases. Pulm Pharmacol Ther 15:241–247

    Article  CAS  PubMed  Google Scholar 

  12. Groneberg DA, Niimi A, Dinh QT, Cosio B, Hew M, Fischer A, Chung KF (2004) Increased expression of transient receptor potential vanilloid-1 in airway nerves of chronic cough. Am J Respir Crit Care Med 170:1276–1280

    Article  PubMed  Google Scholar 

  13. Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398:436–441

    Article  CAS  PubMed  Google Scholar 

  14. Liedtke W, Choe Y, Marti-Renom MA, Bell AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM, Heller S (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103:525–535

    Article  CAS  PubMed  Google Scholar 

  15. McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58

    Article  CAS  PubMed  Google Scholar 

  16. Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A (2002) A TRP channel that senses cold stimuli and menthol. Cell 108:705–715

    Article  CAS  PubMed  Google Scholar 

  17. Alessandri-Haber N, Yeh JJ, Boyd AE, Parada CA, Chen X, Reichling DB, Levine JD (2003) Hypotonicity induces TRPV4-mediated nociception in rat. Neuron 39:497–511

    Article  CAS  PubMed  Google Scholar 

  18. Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, Jordt SE, Julius D (2007) The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448:204–208

    Article  CAS  PubMed  Google Scholar 

  19. Nilius B (2007) Transient receptor potential (TRP) cation channels: rewarding unique proteins. Bull Mem Acad R Med Belg 162:244–253

    PubMed  Google Scholar 

  20. Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, McIntyre P, Jegla T, Bevan S, Patapoutian A (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–829

    Article  CAS  PubMed  Google Scholar 

  21. Jaquemar D, Schenker T, Trueb B (1999) An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts. J Biol Chem 274:7325–7333

    Article  CAS  PubMed  Google Scholar 

  22. Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Hogestatt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265

    Article  CAS  PubMed  Google Scholar 

  23. Geppetti P, Holzer P (1996) Neurogenic inflammation. CRC Press, Boca Raton

    Google Scholar 

  24. Karashima Y, Talavera K, Everaerts W, Janssens A, Kwan KY, Vennekens R, Nilius B, Voets T (2009) TRPA1 acts as a cold sensor in vitro and in vivo. Proc Natl Acad Sci USA 106:1273–1278

    Article  CAS  PubMed  Google Scholar 

  25. Nassenstein C, Kwong K, Taylor-Clark T, Kollarik M, Macglashan DM, Braun A, Undem BJ (2008) Expression and function of the ion channel TRPA1 in vagal afferent nerves innervating mouse lungs. J Physiol 586:1595–1604

    Article  CAS  PubMed  Google Scholar 

  26. Anand U, Otto WR, Facer P, Zebda N, Selmer I, Gunthorpe MJ, Chessell IP, Sinisi M, Birch R, Anand P (2008) TRPA1 receptor localisation in the human peripheral nervous system and functional studies in cultured human and rat sensory neurons. Neurosci Lett 438:221–227

    Article  CAS  PubMed  Google Scholar 

  27. Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI, Julius D (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124:1269–1282

    Article  CAS  PubMed  Google Scholar 

  28. McNamara CR, Mandel-Brehm J, Bautista DM, Siemens J, Deranian KL, Zhao M, Hayward NJ, Chong JA, Julius D, Moran MM, Fanger CM (2007) TRPA1 mediates formalin-induced pain. Proc Natl Acad Sci USA 104:13525–13530

    Article  CAS  PubMed  Google Scholar 

  29. Andersson DA, Gentry C, Moss S, Bevan S (2008) Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J Neurosci 28:2485–2494

    Article  CAS  PubMed  Google Scholar 

  30. Bessac BF, Sivula M, von Hehn CA, Escalera J, Cohn L, Jordt SE (2008) TRPA1 is a major oxidant sensor in murine airway sensory neurons. J Clin Invest 118:1899–1910

    Article  CAS  PubMed  Google Scholar 

  31. Sawada Y, Hosokawa H, Matsumura K, Kobayashi S (2008) Activation of transient receptor potential ankyrin 1 by hydrogen peroxide. Eur J Neurosci 27:1131–1142

    Article  PubMed  Google Scholar 

  32. Trevisani M, Siemens J, Materazzi S, Bautista DM, Nassini R, Campi B, Imamachi N, Andre E, Patacchini R, Cottrell GS, Gatti R, Basbaum AI, Bunnett NW, Julius D, Geppetti P (2007) 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc Natl Acad Sci USA 104:13519–13524

    Article  CAS  PubMed  Google Scholar 

  33. Taylor-Clark TE, Ghatta S, Bettner W, Undem BJ (2009) Nitrooleic acid, an endogenous product of nitrative stress, activates nociceptive sensory nerves via the direct activation of TRPA1. Mol Pharmacol 75:820–829

    Article  CAS  PubMed  Google Scholar 

  34. Materazzi S, Nassini R, Andre E, Campi B, Amadesi S, Trevisani M, Bunnett NW, Patacchini R, Geppetti P (2008) Cox-dependent fatty acid metabolites cause pain through activation of the irritant receptor TRPA1. Proc Natl Acad Sci USA 105:12045–12050

    Article  CAS  PubMed  Google Scholar 

  35. Taylor-Clark TE, Undem BJ, Macglashan DW Jr, Ghatta S, Carr MJ, McAlexander MA (2008) Prostaglandin-induced activation of nociceptive neurons via direct interaction with transient receptor potential A1 (TRPA1). Mol Pharmacol 73:274–281

    Article  CAS  PubMed  Google Scholar 

  36. Hinman A, Chuang HH, Bautista DM, Julius D (2006) TRP channel activation by reversible covalent modification. Proc Natl Acad Sci USA 103:19564–19568

    Article  CAS  PubMed  Google Scholar 

  37. Macpherson LJ, Xiao B, Kwan KY, Petrus MJ, Dubin AE, Hwang S, Cravatt B, Corey DP, Patapoutian A (2007) An ion channel essential for sensing chemical damage. J Neurosci 27:11412–11415

    Article  CAS  PubMed  Google Scholar 

  38. Taylor-Clark TE, McAlexander MA, Nassenstein C, Sheardown SA, Wilson S, Thornton J, Carr MJ, Undem BJ (2008) Relative contributions of TRPA1 and TRPV1 channels in the activation of vagal bronchopulmonary C-fibres by the endogenous autacoid 4-oxononenal. J Physiol 586:3447–3459

    Article  CAS  PubMed  Google Scholar 

  39. Rahman I, MacNee W (1996) Role of oxidants/antioxidants in smoking-induced lung diseases. Free Radic Biol Med 21:669–681

    Article  CAS  PubMed  Google Scholar 

  40. Beck MA, Handy J, Levander OA (2000) The role of oxidative stress in viral infections. Ann NY Acad Sci 917:906–912

    CAS  PubMed  Article  Google Scholar 

  41. Tanou K, Koutsokera A, Kiropoulos TS, Maniati M, Papaioannou AI, Georga K, Zarogiannis S, Gourgoulianis KI, Kostikas K (2009) Inflammatory and oxidative stress biomarkers in allergic rhinitis: the effect of smoking. Clin Exp Allergy 39:345–353

    Article  CAS  PubMed  Google Scholar 

  42. Riedl MA, Nel AE (2008) Importance of oxidative stress in the pathogenesis and treatment of asthma. Curr Opin Allergy Clin Immunol 8:49–56

    Article  CAS  PubMed  Google Scholar 

  43. Lundberg J, Saria A (1983) Capsaicin induced desensitization of the airway mucosa to cigarette smoke, mechanical and chemical irritants. Nature 302:251–253

    Article  CAS  PubMed  Google Scholar 

  44. Geppetti P, Bertrand C, Baker J, Yamawaki I, Piedimonte G, Nadel JA (1993) Ruthenium red, but not capsazepine reduces plasma extravasation by cigarette smoke in rat airways. Br J Pharmacol 108:646–650

    CAS  PubMed  Google Scholar 

  45. Fletcher C, Peto R (1977) The natural history of chronic airflow obstruction. Br Med J 1:1645–1648

    Article  CAS  PubMed  Google Scholar 

  46. MacNee W (2005) Pathogenesis of chronic obstructive pulmonary disease. Proc Am Thorac Soc 2:258–266

    Article  CAS  PubMed  Google Scholar 

  47. Andre E, Campi B, Materazzi S, Trevisani M, Amadesi S, Massi D, Creminon C, Vaksman N, Nassini R, Civelli M, Baraldi PG, Poole DP, Bunnett NW, Geppetti P, Patacchini R (2008) Cigarette smoke-induced neurogenic inflammation is mediated by alpha, beta-unsaturated aldehydes and the TRPA1 receptor in rodents. J Clin Invest 118:2574–2582

    CAS  PubMed  Google Scholar 

  48. Bang S, Kim KY, Yoo S, Kim YG, Hwang SW (2007) Transient receptor potential A1 mediates acetaldehyde-evoked pain sensation. Eur J Neurosci 26:2516–2523

    Article  PubMed  Google Scholar 

  49. Rahman I (2002) Oxidative stress and gene transcription in asthma and chronic obstructive pulmonary disease: antioxidant therapeutic targets. Curr Drug Targets Inflamm Allergy 1:291–315

    Article  CAS  PubMed  Google Scholar 

  50. Caceres AI, Brackmann M, Elia MD, Bessac BF, del Camino D, D’Amours M, Witek JS, Fanger CM, Chong JA, Hayward NJ, Homer RJ, Cohn L, Huang X, Moran MM, Jordt SE (2009) A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma. Proc Natl Acad Sci USA 106:9099–9104

    CAS  PubMed  Google Scholar 

  51. Bertrand C, Geppetti P (1996) Tachykinin and kinin receptor antagonists: therapeutic perspectives in allergic disease. Trends Pharmacol Sci 17:255–259

    Article  CAS  PubMed  Google Scholar 

  52. Pecova R, Vrlik M, Tatar M (2005) Cough sensitivity in allergic rhinitis. J Physiol Pharmacol 56:171–178

    PubMed  Google Scholar 

  53. Ferrari M, Benini L, Brotto E, Locatelli F, De Iorio F, Bonella F, Tacchella N, Corradini G, Lo Cascio V, Vantini I (2007) Omeprazole reduces the response to capsaicin but not to methacholine in asthmatic patients with proximal reflux. Scand J Gastroenterol 42:299–307

    Article  CAS  PubMed  Google Scholar 

  54. Trevisani M, Milan A, Gatti R, Zanasi A, Harrison S, Fontana G, Morice AH, Geppetti P (2004) Antitussive activity of iodo-resiniferatoxin in guinea pigs. Thorax 59:769–772

    Article  CAS  PubMed  Google Scholar 

  55. Lalloo UG, Fox AJ, Belvisi MG, Chung KF, Barnes PJ (1995) Capsazepine inhibits cough induced by capsaicin and citric acid but not by hypertonic saline in guinea pigs. J Appl Physiol 79:1082–1087

    CAS  PubMed  Google Scholar 

  56. Morice AH, Marshall AE, Higgins KS, Grattan TJ (1994) Effect of inhaled menthol on citric acid induced cough in normal subjects. Thorax 49:1024–1026

    Article  CAS  PubMed  Google Scholar 

  57. Andre E, Gatti R, Trevisani M, Preti D, Baraldi PG, Patacchini R, Geppetti P (2009) Transient receptor potential ankyrin receptor 1 is a novel target for pro-tussive agents. Br J Pharmacol 158:1621–1628

    Article  CAS  PubMed  Google Scholar 

  58. Birrell MA, Belvisi MG, Grace M, Sadofsky L, Faruqi S, Hele DJ, Maher SA, Freund-Michel V, Morice AH (2009) TRPA1 Agonists evoke coughing in guinea-pig and human volunteers. Am J Respir Crit Care Med 180:1042–1047

    Article  CAS  PubMed  Google Scholar 

  59. Taylor-Clark TE, Kiros F, Carr MJ, McAlexander MA (2009) Transient receptor potential ankyrin 1 mediates toluene diisocyanate-evoked respiratory irritation. Am J Respir Cell Mol Biol 40:756–762

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported in part by grant from MiUR, Rome (FIRB, RBIP06YM29), Consorzio Ferrara Ricerche, Ferrara, and Associazione per la Ricerca e Cura dell’Asma, Padua, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierangelo Geppetti.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Geppetti, P., Patacchini, R., Nassini, R. et al. Cough: The Emerging Role of the TRPA1 Channel. Lung 188, 63–68 (2010). https://doi.org/10.1007/s00408-009-9201-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-009-9201-3

Keywords

  • TRPA1
  • Cough
  • Sensory neurons
  • Guinea pig