Skip to main content
Log in

The Peroxisome Proliferator Activated Receptor Gamma (PPARγ) Ligand Rosiglitazone Modulates Bronchoalveolar Lavage Levels of Leptin, Adiponectin, and Inflammatory Cytokines in Lean and Obese Mice

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Obese mice that lack leptin receptor (db /db ) have been shown to have innate bronchial hyperresponsiveness (BHR). It has been proposed that the obesity-mediated BHR may involve a combination of increased leptin and reduced systemic adiponectin levels. The aim of this study was to determine if obesity modifies the airway concentration of leptin and adiponectin and whether treatment with a synthetic peroxisome proliferator-activated receptor gamma (PPARγ) ligand can reduce airway leptin and increase airway adiponectin. In this study, obese, leptin receptor-deficient (db /db ), or lean (db + /db ) mice were treated with rosiglitazone (3 mg/kg/day) or vehicle by gavage daily for 1 week. Bronchioalveolar lavage (BAL) was subsequently performed to determine levels of leptin, adiponectin, and inflammatory cytokines. Treatment with rosiglitazone increased BAL adiponectin levels in lean (p = 0.04) and to a lesser extent in obese mice (p = 0.07). Rosiglitazone treatment lowered leptin levels in lean mice, but increased leptin levels in BAL fluid of obese mice (p < 0.01). The BAL levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) were lower in the lean rosiglitazone-treated group compared with the obese vehicle-treated group and lower in the obese rosiglitazone-treated group compared with the obese vehicle-treated group. These results demonstrate that obesity is associated with alterations in adipokine and cytokine levels in the airways that can be modulated by treatment with roziglitazone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Beuther DA, Weiss ST, Sutherland ER (2006) Obesity and asthma. Am J Respir Crit Care Med 174(2):112–119

    Article  PubMed  Google Scholar 

  2. Shore SA (2006) Obesity and asthma: cause for concern. Curr Opin Pharmacol 6(3):230–236

    Article  PubMed  CAS  Google Scholar 

  3. Cassol V, Rizzato TM, Teche SP, Basso DF, Centenaro DF, Maldonado M, Moraes EZ, Hirakata VN, Sole D, Menna-Barreto SS (2006) Obesity and its relationship with asthma prevalence and severity in adolescents from southern Brazil. J Asthma 43(1):57–60

    Article  PubMed  Google Scholar 

  4. Akerman MJ, Calacanis CM, Madsen MK (2004) Relationship between asthma severity and obesity. J Asthma 41(5):521–526

    Article  PubMed  Google Scholar 

  5. Lavoie KL, Bacon SL, Labrecque M, Cartier A, Ditto B (2006) Higher BMI is associated with worse asthma control and quality of life but not asthma severity. Respir Med 100(4):648–657

    Article  PubMed  Google Scholar 

  6. Shore SA, Johnston RA (2006) Obesity and asthma. Pharmacol Ther 110(1):83–102

    Article  PubMed  CAS  Google Scholar 

  7. Loffreda S, Yang SQ, Lin HZ, Karp CL, Brengman ML, Wang DJ, Klein AS, Bulkley GB, Bao C, Noble PW, Lane MD, Diehl AM (1998) Leptin regulates proinflammatory immune responses. FASEB J 12(1):57–65

    PubMed  CAS  Google Scholar 

  8. Shore SA, Schwartzman IN, Mellema MS, Flynt L, Imrich A, Johnston RA (2005) Effect of leptin on allergic airway responses in mice. J Allergy Clin Immunol 115(1):103–109

    Article  PubMed  CAS  Google Scholar 

  9. Engeli S, Feldpausch M, Gorzelniak K, Hartwig F, Heintze U, Janke J, Mohlig M, Pfeiffer AF, Luft FC, Sharma AM (2003) Association between adiponectin and mediators of inflammation in obese women. Diabetes 52(4):942–947

    Article  PubMed  CAS  Google Scholar 

  10. Katsuki A, Suematsu M, Gabazza EC, Murashima S, Nakatani K, Togashi K, Yano Y, Adachi Y, Sumida Y (2006) Increased oxidative stress is associated with decreased circulating levels of adiponectin in Japanese metabolically obese, normal-weight men with normal glucose tolerance. Diabetes Res Clin Pract 73(3):310–314

    Article  PubMed  CAS  Google Scholar 

  11. Nakanishi S, Yamane K, Kamei N, Nojima H, Okubo M, Kohno N (2005) A protective effect of adiponectin against oxidative stress in Japanese Americans: the association between adiponectin or leptin and urinary isoprostane. Metabolism 54(2):194–199

    Article  PubMed  CAS  Google Scholar 

  12. Shore SA, Terry RD, Flynt L, Xu A, Hug C (2006) Adiponectin attenuates allergen-induced airway inflammation and hyperresponsiveness in mice. J Allergy Clin Immunol 118(2):389–395

    Article  PubMed  CAS  Google Scholar 

  13. Shore SA, Rivera-Sanchez YM, Schwartzman IN, Johnston RA (2003) Responses to ozone are increased in obese mice. J Appl Physiol 95(3):938–945

    PubMed  CAS  Google Scholar 

  14. Bruno A, Chanez P, Chiappara G, Siena L, Giammanco S, Gjomarkaj M, Bonsignore G, Bousquet J, Vignola AM (2005) Does leptin play a cytokine-like role within the airways of COPD patients? Eur Respir J 26(3):398–405

    Article  PubMed  CAS  Google Scholar 

  15. Decochez K, Rippley RK, Miller JL, De Smet M, Yan KX, Matthijs Z, Riffel KA, Song H, Zhu H, Maynor HO, Tanaka W, Johnson-Levonas AO, Davies MJ, Gottesdiener KM, Keymeulen B, Wagner JA (2006) A dual PPAR alpha/gamma agonist increases adiponectin and improves plasma lipid profiles in healthy subjects. Drugs R D 7(2):99–110

    Article  PubMed  CAS  Google Scholar 

  16. Tanko LB, Siddiq A, Lecoeur C, Larsen PJ, Christiansen C, Walley A, Froguel P (2005) ACDC/adiponectin and PPAR-gamma gene polymorphisms: implications for features of obesity. Obes Res 13(12):2113–2121

    Article  PubMed  CAS  Google Scholar 

  17. Tsuchida A, Yamauchi T, Takekawa S, Hada Y, Ito Y, Maki T, Kadowaki T (2005) Peroxisome proliferator-activated receptor (PPAR)alpha activation increases adiponectin receptors and reduces obesity-related inflammation in adipose tissue: comparison of activation of PPARalpha, PPARgamma, and their combination. Diabetes 54(12):3358–3370

    Article  PubMed  CAS  Google Scholar 

  18. Denning GM, Stoll LL (2006) Peroxisome proliferator-activated receptors: potential therapeutic targets in lung disease? Pediatr Pulmonol 41(1):23–34

    Article  PubMed  Google Scholar 

  19. Lee KS, Park SJ, Hwang PH, Yi HK, Song CH, Chai OH, Kim JS, Lee MK, Lee YC (2005) PPAR-gamma modulates allergic inflammation through up-regulation of PTEN. FASEB J 19(8):1033–1035

    PubMed  CAS  Google Scholar 

  20. Honda K, Marquillies P, Capron M, Dombrowicz D (2004) Peroxisome proliferator-activated receptor gamma is expressed in airways and inhibits features of airway remodeling in a mouse asthma model. J Allergy Clin Immunol 113(5):882–888

    Article  PubMed  CAS  Google Scholar 

  21. Pershadsingh HA (2004) Peroxisome proliferator-activated receptor-gamma: therapeutic target for diseases beyond diabetes: quo vadis? Expert Opin Investig Drugs 13(3):215–228

    Article  PubMed  CAS  Google Scholar 

  22. Hammad H, de Heer HJ, Soullie T, Angeli V, Trottein F, Hoogsteden HC, Lambrecht BN (2004) Activation of peroxisome proliferator-activated receptor-gamma in dendritic cells inhibits the development of eosinophilic airway inflammation in a mouse model of asthma. Am J Pathol 164(1):263–271

    PubMed  CAS  Google Scholar 

  23. Woerly G, Honda K, Loyens M, Papin JP, Auwerx J, Staels B, Capron M, Dombrowicz D (2003) Peroxisome proliferator-activated receptors alpha and gamma down-regulate allergic inflammation and eosinophil activation. J Exp Med 198(3):411–421

    Article  PubMed  CAS  Google Scholar 

  24. Liu MY, Xydakis AM, Hoogeveen RC, Jones PH, Smith EO, Nelson KW, Ballantyne CM (2005) Multiplexed analysis of biomarkers related to obesity and the metabolic syndrome in human plasma, using the Luminex-100 system. Clin Chem 51(7):1102–1109

    Article  PubMed  CAS  Google Scholar 

  25. Semple RK, Chatterjee VK, O’Rahilly S (2006) PPAR gamma and human metabolic disease. J Clin Invest 116(3):581–589

    Article  PubMed  CAS  Google Scholar 

  26. Kim SG, Ryu OH, Kim HY, Lee KW, Seo JA, Kim NH, Choi KM, Lee J, Baik SH, Choi DS (2006) Effect of rosiglitazone on plasma adiponectin levels and arterial stiffness in subjects with prediabetes or non-diabetic metabolic syndrome. Eur J Endocrinol 154(3):433–440

    Article  PubMed  CAS  Google Scholar 

  27. Toruner F, Akbay E, Cakir N, Sancak B, Elbeg S, Taneri F, Akturk M, Karakoc A, Ayvaz G, Arslan M (2004) Effects of PPARgamma and PPARalpha agonists on serum leptin levels in diet-induced obese rats. Horm Metab Res 36(4):226–230

    Article  PubMed  CAS  Google Scholar 

  28. Hwang J, Kleinhenz DJ, Rupnow HL, Campbell AG, Thule PM, Sutliff RL, Hart CM (2007) The PPARgamma ligand, rosiglitazone, reduces vascular oxidative stress and NADPH oxidase expression in diabetic mice. Vascul Pharmacol 46(6):456–462

    Article  PubMed  CAS  Google Scholar 

  29. Cates EC, Fattouh R, Wattie J, Inman MD, Goncharova S, Coyle AJ, Gutierrez-Ramos JC, Jordana M (2004) Intranasal exposure of mice to house dust mite elicits allergic airway inflammation via a GM-CSF-mediated mechanism. J Immunol 173(10):6384–6392

    PubMed  CAS  Google Scholar 

  30. Allakhverdi Z, Allam M, Renzi PM (2002) Inhibition of antigen-induced eosinophilia and airway hyperresponsiveness by antisense oligonucleotides directed against the common beta chain of IL-3, IL-5, GM-CSF receptors in a rat model of allergic asthma. Am J Respir Crit Care Med 165(7):1015–1021

    PubMed  Google Scholar 

  31. Yamashita N, Tashimo H, Ishida H, Kaneko F, Nakano J, Kato H, Hirai K, Horiuchi T, Ohta K (2002) Attenuation of airway hyperresponsiveness in a murine asthma model by neutralization of granulocyte-macrophage colony-stimulating factor (GM-CSF). Cell Immunol 219(2):92–97

    Article  PubMed  CAS  Google Scholar 

  32. Turlej RK, Fiévez L, Sandersen CF, Dogné S, Kirschvink N, Lekeux P, Bureau F (2001) Enhanced survival of lung granulocytes in an animal model of asthma: evidence for a role of GM-CSF activated STAT5 signalling pathway. Thorax 56(9):696–702

    Article  PubMed  CAS  Google Scholar 

  33. Arnold R, Konig W (2006) Peroxisome-proliferator-activated receptor-gamma agonists inhibit the release of proinflammatory cytokines from RSV-infected epithelial cells. Virology 346(2):427–439

    Article  PubMed  CAS  Google Scholar 

  34. Conus S, Bruno A, Simon HU (2005) Leptin is an eosinophil survival factor. J Allergy Clin Immunol 116(6):1228–1234

    Article  PubMed  CAS  Google Scholar 

  35. Becker J, Delayre-Orthez C, Frossard N, Pons F (2006) Regulation of inflammation by PPARs: a future approach to treat lung inflammatory diseases? Fundam Clin Pharmacol 20(5):429–447

    Article  PubMed  CAS  Google Scholar 

  36. Belvisi MG, Hele DJ, Birrell MA (2006) Peroxisome proliferator-activated receptor gamma agonists as therapy for chronic airway inflammation. Eur J Pharmacol 533(1–3):101–109

    Article  PubMed  CAS  Google Scholar 

  37. Mueller C, Weaver V, Vanden Heuvel JP, August A, Cantorna MT (2003) Peroxisome proliferator-activated receptor gamma ligands attenuate immunological symptoms of experimental allergic asthma. Arch Biochem Biophys 418(2):186–196

    Article  PubMed  CAS  Google Scholar 

  38. Kobayashi M, Thomassen MJ, Rambasek T, Bonfield TL, Raychaudhuri B, Malur A, Winkler AR, Barna BP, Goldman SJ, Kavuru MS (2005) An inverse relationship between peroxisome proliferator-activated receptor gamma and allergic airway inflammation in an allergen challenge model. Ann Allergy Asthma Immunol 95(5):468–473

    Article  PubMed  CAS  Google Scholar 

  39. Benayoun L, Letuve S, Druilhe A, Boczkowski J, Dombret MC, Mechighel P, Megrel J, Leseche G, Aubier M, Pretolani M (2001) Regulation of peroxisome proliferator-activated receptor gamma expression in human asthmatic airways: relationship with proliferation, apoptosis, and airway remodeling. Am J Respir Crit Care Med 164(8 Pt 1):1487–1494

    PubMed  CAS  Google Scholar 

  40. Cabrero A, Cubero M, Llaverias G, Alegret M, Sanchez R, Laguna JC, Vazquez-Carrera M (2005) Leptin down-regulates peroxisome proliferator-activated receptor gamma (PPAR-gamma) mRNA levels in primary human monocyte-derived macrophages. Mol Cell Biochem 275(1–2):173–179

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge their grant support from the Veterans Affairs Research Service, the National Institutes of Health, and Takeda Pharmaceuticals. The expert technical assistance of Mr. Dean Kleinhenz, Ms. Jennifer Bland, and Mrs. Heidi Thorson is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Holguin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holguin, F., Rojas, M. & Hart, C.M. The Peroxisome Proliferator Activated Receptor Gamma (PPARγ) Ligand Rosiglitazone Modulates Bronchoalveolar Lavage Levels of Leptin, Adiponectin, and Inflammatory Cytokines in Lean and Obese Mice. Lung 185, 367–372 (2007). https://doi.org/10.1007/s00408-007-9035-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-007-9035-9

Keywords

Navigation